mom HARVARD
fiuss 4 UNIVERSITY

GPU Computing on
FASRC Cluster

https://docs.rc.fas.harvard.edu/kb/gpgpu-computing-on-the-cluster

& Ho e J\RC
Cannon Cluster FasCE C ANNON

HARVARD’'S LARGEST COMPUTE CLUSTER

Compute: 75,000+ CPU CORES
= 100,000 compute cores 1775+ WATER-COOLED NODES
= Cores/node: 8 to 64 6.2 PETAFLOPS
= Memory/node: 12GB to 512GB (4GB/core) 342 TB RAM
= 2,500,000 NVIDIA GPU cores ™ 60PB STORAGE
Software: 2.5M CUDA CORES
= Operating System CentOS 7 45.6 MILLION JOBS/YR
= Slurm job manager 408 MILLION CPU HR/YR
= 1,000+ scientific tools and programs 800+ LAB GROUPS

= https://portal.rc.fas.harvard.edu/apps/modules OVER 7500 USERS
Interconnect: 3 DATA CENTERS @ 10K+ FT2
= 2 underlying networks connecting 3 data centers BOSTON, CAMBRIDGE, & LEED PLATINUM

GREEN DATA CENTER IN HOLYOKE, MA
= TCP/IP network

= Low-latency 200 GB/s HDR InfiniBand (IB) and 56 GB/s FDR CANNON "45.6 MILLION JOBS/YR
IB network: 408 MILLION CPU HR/YR
= inter-node parallel computing
= fast access to Lustre mounted storage

ODYSSEY3 29 MILLION JOBS/YR
300 MILLION CPU HR/YR

CANNON: THE FASRC CLUSTER IS NAMED IN HONOR - #R3
OF ANNIE JUMP CANNON,'A PIONEER IN ASTRONOMY. {7

https://portal.rc.fas.harvard.edu/apps/modules

VA FAS

What 1s GPGPU?

General-Purpose Graphics Processing Unit (GPGPU) is a graphics processing
unit (GPU) that is programmed for purposes beyond graphics processing, such
as performing computations typically conducted by a Central Processing Unit

(CPU).
. +

CPU GPU
MULTIPLE CORES THOUSANDS OF CORES

mm HARVARD
BT

UNIVERSITY

GPU vs CPU

CPU GPU

Central Processing Unit Graphics Processing Unit

Several cores Many cores

Low latency High throughput

Good for serial processing Good for parallel processing

Can do a handful of operations at once Can do thousands of operations at once

https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/

@mm HARVARD

UNIVERSITY

Heterogeneous Computing

Application Code

Ee——
B | I
|
—
€ [(————] Rest of Sequential
CPU Code
Compute-Intensive | T
GPU Functions L Te——— CPU
---------- S T
"""""""" Use GPU to .
Parallelize]
- TS
| T
g Y,
Y

W e FAS

Using GPGPUs

 GPU enabled applications requires a parallel computing
platform and application programming interface (API) that
allows software developers and software engineers to build
algorithms to modify their application and map
compute-intensive kernels to the GPU.

 GPGPU supports several types of memory in a memory
hierarchy for designers to optimize their programs.

« GPGPU memory is used for transferring data between device
and host -- shared memory is an efficient way for threads in
the same block to share their runtime and data.

@mm HARVARD

UNIVERSITY

Ways to Accelerate your Applications

.
[Applications
4 N N N
. : OpenACC Programming
Libraries) :
Directives Languages
& J J J ,
“Drop-in” Easily Accelerate Maximum

Acceleration Applications Flexibility

mm HARVARD
BT

UNIVERSITY

FAS

Drop-in Library: Cublas

CPU version GPU Acceleration

/I define size

int N =1 << 20;

/[allocate cpu data

x = (float *)malloc(N * sizeof(float));

y = (float *)malloc(N * sizeof(float));

initData(x, y);

/I Perform SAXPY on 1M elements: y[]=a*x[]+y[]

saxpy(N, 2.0, x, 1, y, 1);

/ define size
int N =1 << 20;

/[allocate GPU memory

cudaMalloc(&d_x, N * sizeof(float));

cudaMalloc(&d_y, N * sizeof(float));
initData(x, y);

/I Copy working data from CPU->GPU

cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);

/I Perform SAXPY on 1M elements: y[]=a*x[]+y[]

cublasSaxpy(N, 2.0,d x,1,d_y, 1);

/I Bring the result back to the CPU

cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);

W e FAS

OpenACC

* OpenACC (for Open Accelerators) is a programming standard
for parallel computing on accelerators (mostly on NIVDIA GPU).

 Itis designed to simplify GPU programming.

« The basic approach is to insert special comments (directives)
into the code so as to offload computation onto GPUs and
parallelize the code at the level of GPU (CUDA) cores.

« |t is possible for programmers to create an efficient parallel
OpenACC code with only minor modifications to a serial CPU
code.

mm HARVARD
BT

UNIVERSITY

OpenACC
OpenACC COMPILER DIRECTIVES

Parallel C Code

Parallel Fortran Code

void saxpy(int n,
float a,
fFlloat Exy
float *y)

{

#pragma acc kernels

vila S =ra®x i

saxpy (1<<20, 2.0, x,

igone ((abimie b = 02 4l < mg

y[il;

y):

+4+1)

Slide from Jeff Larkin - Nvidig'c <opernvidia.comiopenace

subroutine saxpy(n, a, x, V)
eell 88 R(8)p w8, &
integer :: n, i

!Sacc kernels
do i=1,n

y(i) = a*x(i)+y (i)
enddo

!Sacc end kernels

end subroutine saxpy

! Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x d, y d)

http://openacc.org

For more information: https://www.bu.edu/tech/files/2017/04/OpenACC-2017Spring.pdf

10

W e FAS

Compute Unified Device Architecture (CUDA)

CUDA platform is a software layer that gives direct access to the GPU's virtual
instruction set and parallel computational elements for the execution of
compute kernels.

Designed to work with programming languages such as C, C++, and Fortran
CUDA is an accessible platform, requiring no advanced skills in graphics
programming, and available to software developers through CUDA-accelerated
libraries and compiler directives.

CUDA-capable devices are typically connected with a host CPU and the host
CPUs are used for data transmission and kernel invocation for CUDA devices.
The CUDA Toolkit includes GPU-accelerated libraries, a compiler, programming
guides, API references, and the CUDA runtime.

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

11

W e FAS

Using Programming Languages

CUDAC

r N
__global
void saxpy(int n, float a, void saxpy(int n, float a,
EllEEe W, Ellegie i) iwllerie, b, acllerie “)
{ {
for (int i = 0; 1 < n; ++i) int i = blockIdx.x*blockDim.x + threadIdx.x;
[a ed [A | 8 A (<) S VA=A e[[[l 67
} }
int N = 1<<20; int N = 1<<20;
cudaMemcpy (d_x, X, N, cudaMemcpyHostToDevice) ;
cudaMemcpy (d_y, y, N, cudaMemcpyHostToDevice) ;
saxpy (N, 2.0, x, y); saxpy<<<4096,256>>>(N, 2.0, d x, d y)-;
cudaMemcpy (y, d_y, N, cudaMemcpyDeviceToHost) ;
\ S \ =

Slide from Jeff Larkin - Nvidia
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html 12

W e FAS

Using GPU’s on FASRC

« NVIDIA Tesla general purpose graphics processing units (GPGPU).
* 15 nodes with 4 V100 per node is available for general use from the gpu partition
* Your lab may have access to other partitions with GPU’s or bought few nodes
— “grep -ri "idreos_parkes" /etc/slurm/slurm.conf”
sinfo -p idreos_parkes
PARTITION AVAIL TIMELIMIT NODES STATE

NODELIST
idreos_parkes up 7-00:00:00 1 mix holygpu2c1125

« Several other nodes with 4 V100 are available in gpu_requeue. These nodes are owned
by various research groups available and may be available when idle.

« FAS members have access to the fas gpu partition which has 34 nodes with 2xK80s.

« SEAS members has access to few other partitions so visit
https://docs.rc.fas.harvard.edu/kb/seas-compute-resources/

13

mm HARVARD
BT

UNIVERSITY

Examples and Questions?

https://github.com/fasrc/User_Codes

14

@@ HARVARD

UNIVERSITY

VDI - Open OnDemand Spbemand

For applications that need a GUI: https://vdi.rc.fas.harvard.edu

Supports:

Remote Desktop
Jupyter Notebooks
Rstudio

Matlab

Notes:

e Need to be on the RC VPN to use
e Sessions are submitted as jobs on the cluster and thus use fairshare but also
can run on any partition

15

https://vdi.rc.fas.harvard.edu

m® HARVARD FAS

Request Help - Resources

» https://docs.rc.fas.harvard.edu/kb/support/
— Documentation
* https://docs.rc.fas.harvard.edu/

— Portal
* http://portal.rc.fas.harvard.edu/rcrt/submit_ticket

— Email
» rchelp@rc.fas.harvard.edu
— Office Hours
« Wednesday noon-3pm https://harvard.zoom.us/j/255102481

— Consulting Calendar
* https://www.rc.fas.harvard.edu/consulting-calendar/

— Training
* https://www.rc.fas.harvard.edu/upcoming-training/

https://docs.rc.fas.harvard.edu/kb/support/

