INFORMATION
TECHNOLOGY

Writing MPI Programs for Odyssey

Teresa Kaltz, PhD
Research Computing

FAS IT Research Computing

* Provide compute resources to FAS and SEAS
for research purposes

Leverage FAS IT infrastructure
Architect and manage RC resources
Support both shared and dedicated hardware

Also have expertise on staff
— Domain level
— Programming

INFORMATION
TECHNOLOGY

What is Odyssey?

* Generic name for RC resources is "odyssey"
* This is the name of the original cluster

— 4096 core Infiniband cluster
— Originally listed as #60 on Top500!
* Now it is just the alias for the login pool
« There are many compute and storage resources

available
— 6000+ cores
— PB+ storage

Rl

INFORMATION
TECHNOLOGY

Using RC Resources

» Users login to access node pool
— odyssey.fas.harvard.edu

« Compute resources accessed via LSF batch
gueuing system

« Software environment controlled via modules

Ability to run parallel jobs
— Many parallel applications installed on Odyssey

— You can also run your own parallel code... so let's get
programming!

4

Rl

INFORMATION
TECHNOLOGY

What is parallel computing?

 Doing calculations concurrently (“in parallel™)
 |nstruction level parallelism happens

“automagically”
— Intel Harpertown can execute 4 flops/tick

 Thread and process level parallelism must be

explicitly programmed
— Some compilers offer autoparallelism features

« Type of parallel computing available depends on
compute infrastructure

Rl

INFORMATION
TECHNOLOGY

Processing Element (PE)

.]
« Almost all CPU’ s in Odyssey are multicore

Each core can execute instructions and is called
a “processing element” in this presentation

Dual CPU Core Chip

1

CPU Core CPU Core
and and
L1 Caches L1 Caches

s

Bus Interface
and
L2 Caches

|

Rl

INFORMATION
TECHNOLOGY

Shared Memory Computer Architecture

« PE’ s operate independently but share memory
resources (“global address space”)

=]
9 ..

INFORMATION 7
TECHNOLOGY

Shared Memory Parallel Programming

* Multiple execution contexts have the same
“view” of all or some of the logical address

space

* Programs use symmetric multi-processing
(SMP) systems like Dell M600 Harpertown
blades in Odyssey

— may have non-uniform memory architecture (NUMA)
(some lliad nodes are Opteron, Nehalems are here!)

« Scientific programmers usually use OpenMP,
Posix Threads (Pthreads), or MPI

INFORMATION
TECHNOLOGY

Distributed Memory Computer

« PE’ s have local memory and require a network
to communicate with other PE’ s

INFORMATION 9

TECHNOLOGY

-]
Distributed Memory Parallel Programming

« “Message passing” provided by a library

* Multiple execution contexts with their own
address space pertaining to local memory

* Programs are run on any type of system that can
communicate over a network
— MPI jobs on Odyssey use an Infiniband network

* Message passing libraries before MPI
— Proprietary library from system vendor
— PVM for network of workstations

Rl

INFORMATION
TECHNOLOGY

What is MPI?

 MPI (Message Passing Interface) is a library
containing a set of standardized names and

calling sequences enabling programs in Fortran,
C or C++ to be run in parallel

* These calling sequences are simply inserted into
existing code

* The resulting code is portable and can be run on
any parallel compute system

« 1.0 standard in 1994: MPI2 later

11

INFORMATION
TECHNOLOGY

MPI Implementations

* Available on Odyssey
— OpenMPI: http://www.open-mpi.org/

— MVAPICH: http://mvapich.cse.ohio-state.edu/
* Vendor implementations

— Intel MPI, HP MPI

— IBM MPI, Cray MPI

 Original open source
— MPICH: http://www.mcs.anl.gov/research/projects/

mpich2/

Rl

INFORMATION
TECHNOLOGY

Advantages of MPI

Programmer has ultimate control over how and
when messages are passed between PE’ s

Resulting code is portable
MPI is a standard

Multiple implementations are available
— Some are open source

All HPC interconnects are supported
Performance is usually good

INFORMATION
TECHNOLOGY

13

Disadvantages of MPI

* Programmer has ultimate control over how and
when messages are passed between PE’ s

— Burden rests entirely on programmer

« Performance and execution can depend on
Implementation
« Debugging can be very difficult

— Scaling issues
— Synchronization and race conditions

Rl

INFORMATION
TECHNOLOGY

MPI| API

Rl

APl has >100 routines
Most codes use a small subset

Many books and tutorials explain semantics and
provide examples

— http://www.mcs.anl.gov/research/projects/mpi/

— https://computing.linl.gov/tutorials/mpi/

MPI standard is online

— http://www.mpi-forum.org/

Easy to teach yourself (mostly)

INFORMATION 15
TECHNOLOGY

MPI| Programs

* MPI programs on Odyssey use a unique process
for each MPI rank

 Each rank will run on one PE

 MPI processes are launched out of band over
GbE

— ssh "fan-out" that scales to large node count
— daemons provide environment, etc

« Running multiple copies of executable across all
PE's

Rl

INFORMATION 16
TECHNOLOGY

“Hello World” MPI Code

#include "mpi.h"
#¥include ==tdio.h=
#include <=ys/utsname.h=

int main{int argc, char *argv[]) {
int numtasks, rank, rc, 1=0;
struct utsname u;
rc = MPI_Init{8argc,8argy);
if (rc != MPI_SUCCESS) {
printf {"Error starting MPI program. Terminating.‘n");
MPI_Abort (MPI_COMM_WORLD, rc);

N
J

MPI_Comm_size{MPI_COMM_WORLD ,&numtasks);
MPI_Comm_rank{MPI_COMM_WORLD ,8xank);

uname (&) ;
printf {"Number of tasks= %d My rank= ¥d from %s\n", numtasks,rank,u.nodename);

MPI_Finalize();

INFORMATION
TECHNOLOGY

Running “Hello World” MPI Code

The output {if any) follows:

Number of tasks= 4 My rank= 3 from herold4@s.rc.fas.harvard.edu
Number of tasks= 4 My rank= 1 from herol3l6.rc.fas.harvard.edu
Mumber of tasks= 4 My rank= 2 from herozZ?716.rc.fas.harvard.edu
Number of tasks= 4 My rank= 8 from herolll4.rc.fas.harvard.edu

TID HOST_NAME COMMAND_LINE STATUS TERMINATION_TIME

herolll4 Aa. a6/12/2089 15:4
herol316 Ja. a6/12/2089 15:4
hero2716 Ja. g ae/12/2009 15:4
3 herold48s Q. a6/12/26089 15:4

INFORMATION 18
TECHNOLOGY

Communicating Using MPI: Collectives

« MPI has an extensive number of routines for
sending data between all ranks in a

communicator
 These are called “collective” routines

* These are much easier to program than routines
communicating between only two ranks

* Routines have been optimized
« Will not scale to large # of PE’ s (ranks)
* Not appropriate for large memory jobs

__|
19

INFORMATION
TECHNOLOGY

MPI| Bcast(buffer,count,type,source)

JOSS300T] 4—

—» data

Broadcast
—_—

Fl&| |

INFORMATION
TECHNOLOGY

20

Collective Routines

* Reductions, scatter, gather, barrier
« Can account for striding, various data types

« Buffer does not have to be divisible by rank
count
 Does not have to be between all ranks

— Can create subsets of ranks using custom
communicators

 MPI_Barrier will synchronize all ranks
— You will rarely need to do this!

Rl

21

INFORMATION
TECHNOLOGY

Rl

MP1_Alltoall()

JOSSAO0T] 4—

W

£2

INFORMATION

TECHNOLOGY

alltoall

0

£2

22

Collectives Summary

« Substitute for more complex sequence of sends
and receives

— MPI does the work, not the programmer

 No message tags needed
— MPI keeps track of messages, ensures progress

« Calls block until they are locally complete
* Routines may or may not synchronize across

ranks
— NOT equivalent to MPI_Barrier

Rl

23

INFORMATION
TECHNOLOGY

Point to Point Communication

 Message sent from one rank to another rank
e Also called “send and receives”

« 8 basic types of sends

— 4 communication modes
 standard, buffered, synchronous, ready

— blocking vs non-blocking
“One-sided” communication in MPI2

— More on this later

Rl

INFORMATION
TECHNOLOGY

24

Why So Many Kinds?

* Do ranks synchronize?

« Will message ever be buffered on sending or
receiving side?
— Who manages the buffer?

 How do | know when buffer is safe to be reused?

 How do | know when message has been
received?

Rl

INFORMATION 25
TECHNOLOGY

Standard Mode

* This is probably what you will want to use
— Hides most details from programmer

— Does not (necessarily) synchronize ranks
— MPI determines whether to use system buffer

* Blocking vs non-blocking
— Buffer safe to use after blocking call returns

— Must use additional MPI polling/test routines for non-

blocking
— Non-blocking routines allow overlap of computation

and communication

INFORMATION
TECHNOLOGY

26

Quiz: Will This Deadlock?

/% Blocking 3end Deadlock Example */

if (rank == 8) {
dest = 15 src = 1;
rc = MPI_Send{sbuf, size, MPI_INT, dest, tag, MPI_COMM_WORLD);
rc = MPI_Recv{rbuf, size, MPI_INT, src, tag, MPI_COMM_WORLD, &Stat);

1
else if {rank == 1) {

dest = 85 src = 8;

rc = MPI_Send{sbuf, size, MPI_INT, dest, tag, MPI_COMM_WORLD);

rc = MPI_Recv{rbuf, size, MPI_INT, src, tag, MPI_COMM_WORLD, &Stat);

INFORMATION
TECHNOLOGY

27

Answer: It Depends!!

« One factor is that standard blocking send may or

may not synchronize ranks
« Synchronization depends on whether "eager” or

"rendezvous” protocol is used
— Rendezvous synchronizes ranks and minimizes use

of system buffers
— This is usually a runtime tunable based on message

size; default usually ~16-64KB
— Exact behavior dependent on implementation type of

interconnect (RDMA will usually override)
28

Rl

INFORMATION
TECHNOLOGY

Make Sure You Code Correctly

* Always match send/recv
— Avoid "head to head" like my deadlock example

« Use non-blocking if you want to scale to large
rank counts

* Underlying protocols/buffering will vary with
iInterconnect type, MP| implementation, message
size and rank count, among other things
— Check MPI standard for correct behavior
— Just because it worked once doesn't mean bug free

Rl

INFORMATION 29
TECHNOLOGY

Point to Point Considerations

 Need to avoid deadlock situations

* Ensure rank pairs, tags and request handles
scale with # ranks
— Correct execution at largest anticipated scale

« Cannot access buffer until safe to do so
— Technically this may include read-only access!!

* Debugging is hard
— Actually can be really REALLY hard
— More on this later...

__|
30

Rl

INFORMATION
TECHNOLOGY

User Defined Datatypes

.]
 May create new datatypes based on MPI
primitive datatypes

 May be non-contiguous

« Several methods available
— Contiguous
— Vector
— Indexed
— Struct

31

INFORMATION
TECHNOLOGY

Misc MPI Functions

« Grid topologies
* Dynamic processes
« MPI'l/O

— More on this later

* There are probably some routines | have never
even heard of...

 Lots of references for all of these

__|
32

INFORMATION
TECHNOLOGY

Parallelization Strategies

.
« Code has small memory footprint but long run
time
— Use collective communication routines
« Desire is to run “bigger” simulations than is
available with current SMP hardware
— Use point to point routines

 |/O bound
— Can read/write from each process and/or MPI 1/O
— 1/O is very complex topic though...

Rl

INFORMATION 33

TECHNOLOGY

INFORMATION
TECHNOLOGY

S
34

Getting MPI in Your Environment

 FAS RC uses software modules
« Easiest to put module load command in startup

files
— Ensures any process will have correct environment

— Works for all MPI modules on Odyssey
— Only works if you are using same MPI for all jobs

* Put module load command in LSF script
— But make sure you can execute module command!!

Rl

INFORMATION
TECHNOLOGY

35

Running MPI Jobs

« Make sure your default environment does NOT
dump core files!!

— limit coredumpfile O
« Recent versions of MPI modules will have all

remote processes inherit environment of
submission shell

— This doesn't work for older OpenMPI| modules

* If you set manually remember that OpenMPI
needs to find orted in your path

Rl

INFORMATION 36

TECHNOLOGY

MPI| Launch Mechanisms

* MPI programs on Odyssey use a unique process

for each MPI rank
* Loose integration between LSF and MPI
— Node reservation and process launch decoupled
— Should use mpirun.Isf script to ensure processes are
scheduled on reserved nodes

— Do not use machinefiles
— Can launch script which then calls MPI binary

37

INFORMATION
TECHNOLOGY

Sample LSF Script

.]
« Use —a to specify MP| implementation

« Use ptile to control how many MPI processes
are launched per node

#! /binfcsh

#ESUE -q short_parallel
#ESUE -n 2

#SUE -2 err

#ESUE -0 out

#ESUE -a openmpi

#SUE -R "span[ptile=1]"

mpirun.lsf ./a.out

Rl
T

INFORMATION
TECHNOLOGY

Parallel Queues on Odyssey

« * parallel queues + some others
— These run on 32 GB hero[01-32]* nodes on single IB

fabric
— Scheduled along with serial and other general

purpose jobs

« Special project queues
— These run on 32 GB hero[40-52]* nodes

— Different IB fabric than *parallel queues
— May pre-empt serial jobs that land on these nodes
(pre-emption means process is sent SIGSTOP)

39

INFORMATION
TECHNOLOGY

Cleaning Up Remote Processes

* |t is responsibility of MPI implementation to tear
down and clean up remote processes

— Use timeout mechnism
— Some implementations do a better job than others...

* Programmer should help by checking error
conditions and calling Finalize/Abort on all ranks

* Odyssey users may log into remote nodes
themselves and Kkill rogue processes they own

INFORMATION
TECHNOLOGY

MPI Tunables

« All MPIl implementations have many runtime
tunables
* Most of them are for performance

— The defaults are usually good
— Can waste a lot of time fiddling with these

« A few might be critical for code to function

properly
— Disable mpi_leave pinned for OpenMPI

— This will be covered later in the talk

Rl

INFORMATION
TECHNOLOGY

41

MPI| and Threads

 MPI standard defines "thread compliant”
— All MPI calls must be "thread safe”
— Blocking routines block calling thread only

« Specific MPI routines to handle threads

— MPI_Init_thread
— Specifies level of threading support needed
— What if you don't alert MPI to thread use?

— How does message progress happen?

42

INFORMATION
TECHNOLOGY

"Thread Safe" MPI

* Most MPI implementations claim to be "thread
safe”

— But what does this really mean?

« Sometimes requires linking a special version of
the MPI library

« Usually ok to have only one thread calling all
MPI routines (MPI_THREAD_ FUNNELED)

* Would recommend against "threaded"” MPI
programming model in general

INFORMATION
TECHNOLOGY

43

OpenMPI 1.3.2 Release Notes

MPI_THREAD_MULTIPLE support is included, but is only lightly tested.
It likely does not work for thread-intensive applications. HNote
that *only* the MPI point-to-point communication functions for the
BETL 's listed above are considered thread safe. 0Other support

functions {e.g., MPI attributes) have not been certified as safe
when simultaneously used by multiple threads.

Note that Open MPI's thread support is in a fairly early stage; the
above devices are likely to *work*, but the latency is likely to be
fairly high. Specifically, efforts so far have concentrated on
correctness¥, not *performance* (yet).

INFORMATION 44
TECHNOLOGY

Parallel |1/0O

« Large complex but very important topic...
— Needs its own presentation

« Often local scratch is good option
— Don't use /tmp, use /scratch

— Clean up after yourself!
* Odyssey has many parallel filesystem options

— http://hptc.fas.harvard.edu/odyssey/faq/filesystems
« Should parallelism be at application or filesystem

level? Or both?

45

Rl

INFORMATION
TECHNOLOGY

MPI 1/O

 MPI I/O was added to MPI12 standard
« Solves many issues of programming parallel 1/O
but mostly silent on performance
— Shared file pointers
— Collective read/write
— Portable data representation

« Performance requires a smart programmer,
good MPI implementation, and great filesystem!

« Check Web for references/tutorials

Rl

INFORMATION
TECHNOLOGY

46

MPI Over Infiniband

* Infiniband (IB) is an open standard for a high
speed low latency switched network

— http://www.infinibandta.org/
* Requires special hardware and software
Capable of remote DMA (RDMA) zero-copy
transfers

« Performance results measured on Odyssey

— Latency: 1.2 usec
— Bandwidth: 1.2 GB/s

INFORMATION
TECHNOLOGY

47

IB "verbs"

* |B does not have an API

* Actions are known as "verbs"
— Services provided to ULP
— Send verb, receive verb, etc

* On Odyssey we use the open source OFED
distribution from Openfabrics to provide verbs to

our MPI implementations

Rl

INFORMATION
TECHNOLOGY

48

Remote DMA (RDMA)

« HCA directly sends/receives from RAM
 No involvement from main CPU

« But...
— OS can change virtual <-> physical address mapping

at any time!!
— This creates a race condition between HCA sending

data and VM mapping changes
« RDMA not just used in IB

Rl

INFORMATION
TECHNOLOGY

49

Solution: Register Memory

« Tell OS not to change mapping
— This is called "pinning" memory

— Guarantees buffer will stay in same physical location
until HCA is done

* In IB verbs this is called "registering”" memory
— Static virtual <-> physical mapping
— Notifies HCA of mapping
— Pinned pages cannot be swapped

— This is very expensive operation

Rl

INFORMATION
TECHNOLOGY

50

MPI Memory Agnostic

« MPI standard allows ANY buffer to be used in
send/recv

 MPI standard tried to address RDMA memory
Issues in MPI2

— One-sided operations (MP1_Put/MPI_Get)
— MPI_Alloc_mem

— But no one uses these!!

» Users want RDMA performance for any MPI
routine

INFORMATION 51
TECHNOLOGY

Why Do We Care??

* This may create problems

— fork()/exec()
— http://www.open-mpi.org/faq/?category=openfabrics#ofa-fork

* By default most MPI implementations intercept

malloc library call
— This can usually be disabled but you risk MPI being

unaware of memory being returned to OS

— This can happen anyway!!
— Can control cache via mpi_leave pinned tunable (and

related parameters)
52

Rl

INFORMATION
TECHNOLOGY

General Performance Issues

* Good rule of thumb for estimating performance
— Memory accesses (load/store) ~nanoseconds
— Interconnect (MPI send/recv) ~microseconds

— 1/O (read/write) ~milliseconds

* Important to understand where the "bottleneck”
occurs

* More abstraction/virtualization usually means
worse performance

53

Rl

INFORMATION
TECHNOLOGY

Always be Aware of Resource Usage!

* Are you going to run out of memory?
— Most nodes on Odyssey have 32 GB
— Paging/swapping will kill performance and probably
the node...
* Do you need to do lots of I/O?
— Match filesystem with 1/O workload
— Large streaming writes should use lustre (/n/data)
— Small file 1/O... Best to talk with us first
— Don't hammer our home filesystem please :0)

Rl

INFORMATION
TECHNOLOGY

54

oes My Code Scale”?”

"How Well C

 How long is a piece of string?
« Many parameters must be fixed before this

question becomes meaningful
— System hardware, software, and environment
— Path through code
— Data set
« Scaling is also a function of rank layout
— # ranks/node

— Core/memory affinity
55

Rl

INFORMATION
TECHNOLOGY

Performance Tuning on Odyssey

* Very hard to quantify performance improvements

on system like Odyssey
 All resources are shared

— Compute nodes

— Infiniband interconnect
— Filesystems (many of which have different

performance characteristics!)

« Odyssey is architected to achieve maximum
amount of science not best individual job runtime

56

Rl

INFORMATION
TECHNOLOGY

Variability on Odyssey

« Should expect some amount of variability run to
run in most cases

|t is not possible to achieve "benchmark
conditions” on this system; it is production
environment

« Other sources of variability

— |B statically routed
— VM history of node

INFORMATION
TECHNOLOGY

Y

MPI| Latency on Odyssey

OSU Latency

ConnectX DDR OpenMPI 1 hop -
ConnectX DDR OpenMPI 5 hops

Latency (usec)
($a]
T
1

INFORMATION
TECHNOLOGY

Unidirectional Bandwidth on Odyssey

OSU Unidirectional Bandwidth

2200 ! LR | ! L ! L ! L | ol
ConnectX DDR OpenMPI f
2000 1
1800 - 4
@
@ 1600 | -
=
g 1400 At]
s
2 1200 =
= 1000 - 7 y
c /
ke ,
3] 800 | 4
2 600 gl -
400 ' i
200 + / .
- _’_-“’f;'i"- ' ' L l L L L l AL L A1 l 1 L ' l ' ' L
0.01 0.1 1 10 100 1000 10000
KBytes

INFORMATION
TECHNOLOGY

Application Scaling

Programmers often use Amdahl's law to
estimate scaling

Speedup is limited by the time needed for the
serial portion of program

Sources of serial execution

- 1/O
— Startup/shutdown
— Synchronization points

INFORMATION
TECHNOLOGY

60

Amdahl's Law

Amdahl's Law
20.00 —
o
135.00 — | — | S— | — — {
”
Parallel Portion
1€.00: - 0.6" . - . - S0% - ‘
.,.’ — TS
400—t+—tr—tr—tr—t+r>-Tr—r—1r—1r1 0% e—
I: 95%
“12.00 - - - . "ﬁ‘ - - - - - - “
= |
= |
10000 ¢+ { f HF 4t o+ 4 e I I S —
[~ l +
w , }
5.00 ‘ 4 4 ,/'o r 4 - | ! 4 4 4 i
"}
€.00+ -+ 4) E— 4 + + - + -+ + 4 + 4 + {
/A
*oo‘ - 0"’0 * - » *
A - 1
1
2.00;/(/__.'}-—*; R : ' :
0.00¢ + $ 50 N ¢ ¢ N Ot woe
- + » ﬁ ﬁ 3 T 3 n oA B v on
n MW oS 8 g 4 o oooN
N = "N v
Numbaer of Pro cazzon

INFORMATION

TECHNOLOGY

61

Other Performance Issues

 Amdahl's Law is theoretical limit of speedup
— Not that useful IMHO...

« Other important factors are communication
overhead and load balancing

« Communication overhead

— You can never achieve perfect speedup even if all
execution can be parallelized

— Communication overhead will often dominate for
many codes at large PE count

Rl

62

INFORMATION
TECHNOLOGY

Load Balancing

.]
* A parallel program will only run as fast as the
slowest rank

« Should distribute workload evenly across ranks

« Often most difficult part of parallel programming!
— Often good serial algorithms work poorly in parallel
— Sometimes better to change algorithms entirely

— May want to duplicate computational work rather than
add communication overhead

— Check literature

Rl

63

INFORMATION
TECHNOLOGY

Good Load Balancing

100%
900, — — —
80%
70%
60%
50% & Communication
40% | | | | | | | Compute
30%
20%
10%
0%
Rank 0 Rank 1 Rank 2 Rank 3

Rl

INFORMATION 64
TECHNOLOGY

Poor Load Balancing

e
100% T mam W

90%
80%
70%
60% -
50% -
40%
30% | |] —
20% 1 |] —
10% 1] | —
0%

@ Communication
Compute

Rank O Rank 1 Rank 2 Rank 3

= FAS
INFORMATION 65
TECHNOLOGY

Scaling Application Workload

* As you add more ranks you should increase

oroblem size
ncreasing rank count with fixed problem size

eads to communication overhead dominating

run time
— Amount of work per rank decreases
— Can occasionally see "superscaling" where speedup

IS better than linear at large rank counts
— This is due to resident set fitting entirely in cache

66

INFORMATION
TECHNOLOGY

MPI Debugging

« Totalview is good for deterministic problems on

small scale
— See FAS RC web site for instructions

— Has a lot of useful functionality
— Hard to use in production batch environment like

Odyssey
 Remember printf changes timing!!

« Can use wrappers
— Write MPI_ routine that calls PMPI_

Rl

INFORMATION
TECHNOLOGY

67

Debugging Large Parallel Jobs
.- 000001
* Bugs often only happen at scale and with
optimization turned on
— Most non-trivial bugs are due to race conditions

* Debugging hangs
— Attach gdb to rank 0 and some other random rank

— Can usually figure out location of the problem
* Debugging non-deterministic crashes

— Observe behavior as you vary rank count

— Selectively dump core files

Rl

INFORMATION
TECHNOLOGY

68

Conclusions

* MPI library is standard for writing parallel
scientific applications

« Will be supported for longer than science will be
interesting!

« Learning curve is shallow for API but steep for
scaling to large # PE's

« Odyssey is a fantastic resource for academic
researchers wanting to develop parallel codes

INFORMATION 69
TECHNOLOGY

Any Questions?

« Harvard Research Computing Web Site
— http://hptc.fas.harvard.edu/

 Emall
— rchelp@fas.harvard.edu

— kaltz@fas.harvard.edu

INFORMATION
TECHNOLOGY

70

