
1

Writing MPI Programs for Odyssey

Teresa Kaltz, PhD
Research Computing

FAS IT Research Computing

•  Provide compute resources to FAS and SEAS
for research purposes

•  Leverage FAS IT infrastructure
•  Architect and manage RC resources
•  Support both shared and dedicated hardware
•  Also have expertise on staff

–  Domain level
–  Programming

2

What is Odyssey?

•  Generic name for RC resources is "odyssey"
•  This is the name of the original cluster

–  4096 core Infiniband cluster
–  Originally listed as #60 on Top500!

•  Now it is just the alias for the login pool
•  There are many compute and storage resources

available
–  6000+ cores
–  PB+ storage

3

Using RC Resources

•  Users login to access node pool
–  odyssey.fas.harvard.edu

•  Compute resources accessed via LSF batch
queuing system

•  Software environment controlled via modules
•  Ability to run parallel jobs

–  Many parallel applications installed on Odyssey
–  You can also run your own parallel code... so let's get

programming!

4

What is parallel computing?

•  Doing calculations concurrently (“in parallel”)
•  Instruction level parallelism happens
“automagically”
–  Intel Harpertown can execute 4 flops/tick

•  Thread and process level parallelism must be
explicitly programmed
–  Some compilers offer autoparallelism features

•  Type of parallel computing available depends on
compute infrastructure

5

•  Almost all CPU’s in Odyssey are multicore
•  Each core can execute instructions and is called

a “processing element” in this presentation

6

Processing Element (PE)

Shared Memory Computer Architecture

•  PE’s operate independently but share memory
resources (“global address space”)

7

Shared Memory Parallel Programming

•  Multiple execution contexts have the same
“view” of all or some of the logical address
space

•  Programs use symmetric multi-processing
(SMP) systems like Dell M600 Harpertown
blades in Odyssey
–  may have non-uniform memory architecture (NUMA)

(some Iliad nodes are Opteron, Nehalems are here!)
•  Scientific programmers usually use OpenMP,

Posix Threads (Pthreads), or MPI

8

Distributed Memory Computer

•  PE’s have local memory and require a network
to communicate with other PE’s

9

Distributed Memory Parallel Programming

•  “Message passing” provided by a library
•  Multiple execution contexts with their own

address space pertaining to local memory
•  Programs are run on any type of system that can

communicate over a network
–  MPI jobs on Odyssey use an Infiniband network

•  Message passing libraries before MPI
–  Proprietary library from system vendor
–  PVM for network of workstations

10

What is MPI?

•  MPI (Message Passing Interface) is a library
containing a set of standardized names and
calling sequences enabling programs in Fortran,
C or C++ to be run in parallel

•  These calling sequences are simply inserted into
existing code

•  The resulting code is portable and can be run on
any parallel compute system

•  1.0 standard in 1994; MPI2 later

11

MPI Implementations

•  Available on Odyssey
–  OpenMPI: http://www.open-mpi.org/
–  MVAPICH: http://mvapich.cse.ohio-state.edu/

•  Vendor implementations
–  Intel MPI, HP MPI
–  IBM MPI, Cray MPI

•  Original open source
–  MPICH: http://www.mcs.anl.gov/research/projects/

mpich2/

12

Advantages of MPI

•  Programmer has ultimate control over how and
when messages are passed between PE’s

•  Resulting code is portable
•  MPI is a standard
•  Multiple implementations are available

–  Some are open source
•  All HPC interconnects are supported
•  Performance is usually good

13

Disadvantages of MPI

•  Programmer has ultimate control over how and
when messages are passed between PE’s
–  Burden rests entirely on programmer

•  Performance and execution can depend on
implementation

•  Debugging can be very difficult
–  Scaling issues
–  Synchronization and race conditions

14

MPI API

•  API has >100 routines
•  Most codes use a small subset
•  Many books and tutorials explain semantics and

provide examples
–  http://www.mcs.anl.gov/research/projects/mpi/
–  https://computing.llnl.gov/tutorials/mpi/

•  MPI standard is online
–  http://www.mpi-forum.org/

•  Easy to teach yourself (mostly)

15

MPI Programs

•  MPI programs on Odyssey use a unique process
for each MPI rank

•  Each rank will run on one PE
•  MPI processes are launched out of band over

GbE
–  ssh "fan-out" that scales to large node count
–  daemons provide environment, etc

•  Running multiple copies of executable across all
PE's

16

“Hello World” MPI Code

17

Running “Hello World” MPI Code

18

Communicating Using MPI: Collectives

•  MPI has an extensive number of routines for
sending data between all ranks in a
communicator

•  These are called “collective” routines
•  These are much easier to program than routines

communicating between only two ranks
•  Routines have been optimized
•  Will not scale to large # of PE’s (ranks)
•  Not appropriate for large memory jobs

19

MPI_Bcast(buffer,count,type,source)

20

Collective Routines

•  Reductions, scatter, gather, barrier
•  Can account for striding, various data types
•  Buffer does not have to be divisible by rank

count
•  Does not have to be between all ranks

–  Can create subsets of ranks using custom
communicators

•  MPI_Barrier will synchronize all ranks
–  You will rarely need to do this!

21

MPI_Alltoall()

22

Collectives Summary

•  Substitute for more complex sequence of sends
and receives
–  MPI does the work, not the programmer

•  No message tags needed
–  MPI keeps track of messages, ensures progress

•  Calls block until they are locally complete
•  Routines may or may not synchronize across

ranks
–  NOT equivalent to MPI_Barrier

23

Point to Point Communication

•  Message sent from one rank to another rank
•  Also called “send and receives”
•  8 basic types of sends

–  4 communication modes
•  standard, buffered, synchronous, ready

–  blocking vs non-blocking
•  “One-sided” communication in MPI2

–  More on this later

24

Why So Many Kinds?

•  Do ranks synchronize?
•  Will message ever be buffered on sending or

receiving side?
–  Who manages the buffer?

•  How do I know when buffer is safe to be reused?
•  How do I know when message has been

received?

25

Standard Mode

•  This is probably what you will want to use
–  Hides most details from programmer
–  Does not (necessarily) synchronize ranks
–  MPI determines whether to use system buffer

•  Blocking vs non-blocking
–  Buffer safe to use after blocking call returns
–  Must use additional MPI polling/test routines for non-

blocking
–  Non-blocking routines allow overlap of computation

and communication

26

Quiz: Will This Deadlock?

27

Answer: It Depends!!

•  One factor is that standard blocking send may or
may not synchronize ranks

•  Synchronization depends on whether "eager" or
"rendezvous" protocol is used
–  Rendezvous synchronizes ranks and minimizes use

of system buffers
–  This is usually a runtime tunable based on message

size; default usually ~16-64KB
–  Exact behavior dependent on implementation type of

interconnect (RDMA will usually override)

28

Make Sure You Code Correctly

•  Always match send/recv
–  Avoid "head to head" like my deadlock example

•  Use non-blocking if you want to scale to large
rank counts

•  Underlying protocols/buffering will vary with
interconnect type, MPI implementation, message
size and rank count, among other things
–  Check MPI standard for correct behavior
–  Just because it worked once doesn't mean bug free

29

Point to Point Considerations

•  Need to avoid deadlock situations
•  Ensure rank pairs, tags and request handles

scale with # ranks
–  Correct execution at largest anticipated scale

•  Cannot access buffer until safe to do so
–  Technically this may include read-only access!!

•  Debugging is hard
–  Actually can be really REALLY hard
–  More on this later...

30

User Defined Datatypes

•  May create new datatypes based on MPI
primitive datatypes

•  May be non-contiguous
•  Several methods available

–  Contiguous
–  Vector
–  Indexed
–  Struct

31

Misc MPI Functions

•  Grid topologies
•  Dynamic processes
•  MPI I/O

–  More on this later
•  There are probably some routines I have never

even heard of...
•  Lots of references for all of these

32

Parallelization Strategies

•  Code has small memory footprint but long run
time
–  Use collective communication routines

•  Desire is to run “bigger” simulations than is
available with current SMP hardware
–  Use point to point routines

•  I/O bound
–  Can read/write from each process and/or MPI I/O
–  I/O is very complex topic though...

33

Let's Take a Break!

34

Getting MPI in Your Environment

•  FAS RC uses software modules
•  Easiest to put module load command in startup

files
–  Ensures any process will have correct environment
–  Works for all MPI modules on Odyssey
–  Only works if you are using same MPI for all jobs

•  Put module load command in LSF script
–  But make sure you can execute module command!!

35

Running MPI Jobs

•  Make sure your default environment does NOT
dump core files!!
–  limit coredumpfile 0

•  Recent versions of MPI modules will have all
remote processes inherit environment of
submission shell
–  This doesn't work for older OpenMPI modules

•  If you set manually remember that OpenMPI
needs to find orted in your path

36

MPI Launch Mechanisms

•  MPI programs on Odyssey use a unique process
for each MPI rank

•  Loose integration between LSF and MPI
–  Node reservation and process launch decoupled
–  Should use mpirun.lsf script to ensure processes are

scheduled on reserved nodes
–  Do not use machinefiles
–  Can launch script which then calls MPI binary

37

Sample LSF Script

•  Use –a to specify MPI implementation
•  Use ptile to control how many MPI processes

are launched per node

38

Parallel Queues on Odyssey

•  *_parallel queues + some others
–  These run on 32 GB hero[01-32]* nodes on single IB

fabric
–  Scheduled along with serial and other general

purpose jobs
•  Special project queues

–  These run on 32 GB hero[40-52]* nodes
–  Different IB fabric than *parallel queues
–  May pre-empt serial jobs that land on these nodes

(pre-emption means process is sent SIGSTOP)

39

Cleaning Up Remote Processes

•  It is responsibility of MPI implementation to tear
down and clean up remote processes
–  Use timeout mechnism
–  Some implementations do a better job than others...

•  Programmer should help by checking error
conditions and calling Finalize/Abort on all ranks

•  Odyssey users may log into remote nodes
themselves and kill rogue processes they own

40

MPI Tunables

•  All MPI implementations have many runtime
tunables

•  Most of them are for performance
–  The defaults are usually good
–  Can waste a lot of time fiddling with these

•  A few might be critical for code to function
properly
–  Disable mpi_leave_pinned for OpenMPI
–  This will be covered later in the talk

41

MPI and Threads

•  MPI standard defines "thread compliant"
–  All MPI calls must be "thread safe"
–  Blocking routines block calling thread only

•  Specific MPI routines to handle threads
–  MPI_Init_thread
–  Specifies level of threading support needed
–  What if you don't alert MPI to thread use?
–  How does message progress happen?

42

"Thread Safe" MPI

•  Most MPI implementations claim to be "thread
safe"
–  But what does this really mean?

•  Sometimes requires linking a special version of
the MPI library

•  Usually ok to have only one thread calling all
MPI routines (MPI_THREAD_FUNNELED)

•  Would recommend against "threaded" MPI
programming model in general

43

OpenMPI 1.3.2 Release Notes

44

Parallel I/O

•  Large complex but very important topic...
–  Needs its own presentation

•  Often local scratch is good option
–  Don't use /tmp, use /scratch
–  Clean up after yourself!

•  Odyssey has many parallel filesystem options
–  http://hptc.fas.harvard.edu/odyssey/faq/filesystems

•  Should parallelism be at application or filesystem
level? Or both?

45

MPI I/O

•  MPI I/O was added to MPI2 standard
•  Solves many issues of programming parallel I/O

but mostly silent on performance
–  Shared file pointers
–  Collective read/write
–  Portable data representation

•  Performance requires a smart programmer,
good MPI implementation, and great filesystem!

•  Check Web for references/tutorials

46

MPI Over Infiniband

•  Infiniband (IB) is an open standard for a high
speed low latency switched network
–  http://www.infinibandta.org/

•  Requires special hardware and software
•  Capable of remote DMA (RDMA) zero-copy

transfers
•  Performance results measured on Odyssey

–  Latency: 1.2 usec
–  Bandwidth: 1.2 GB/s

47

IB "verbs"

•  IB does not have an API
•  Actions are known as "verbs"

–  Services provided to ULP
–  Send verb, receive verb, etc

•  On Odyssey we use the open source OFED
distribution from Openfabrics to provide verbs to
our MPI implementations

48

Remote DMA (RDMA)

•  HCA directly sends/receives from RAM
•  No involvement from main CPU
•  But...

–  OS can change virtual <-> physical address mapping
at any time!!

–  This creates a race condition between HCA sending
data and VM mapping changes

•  RDMA not just used in IB

49

Solution: Register Memory

•  Tell OS not to change mapping
–  This is called "pinning" memory
–  Guarantees buffer will stay in same physical location

until HCA is done
•  In IB verbs this is called "registering" memory

–  Static virtual <-> physical mapping
–  Notifies HCA of mapping
–  Pinned pages cannot be swapped
–  This is very expensive operation

50

MPI Memory Agnostic

•  MPI standard allows ANY buffer to be used in
send/recv

•  MPI standard tried to address RDMA memory
issues in MPI2
–  One-sided operations (MPI_Put/MPI_Get)
–  MPI_Alloc_mem
–  But no one uses these!!

•  Users want RDMA performance for any MPI
routine

51

Why Do We Care??

•  This may create problems
–  fork()/exec()
–  http://www.open-mpi.org/faq/?category=openfabrics#ofa-fork

•  By default most MPI implementations intercept
malloc library call
–  This can usually be disabled but you risk MPI being

unaware of memory being returned to OS
–  This can happen anyway!!
–  Can control cache via mpi_leave_pinned tunable (and

related parameters)

52

General Performance Issues

•  Good rule of thumb for estimating performance
–  Memory accesses (load/store) ~nanoseconds
–  Interconnect (MPI send/recv) ~microseconds
–  I/O (read/write) ~milliseconds

•  Important to understand where the "bottleneck"
occurs

•  More abstraction/virtualization usually means
worse performance

53

Always be Aware of Resource Usage!

•  Are you going to run out of memory?
–  Most nodes on Odyssey have 32 GB
–  Paging/swapping will kill performance and probably

the node...
•  Do you need to do lots of I/O?

–  Match filesystem with I/O workload
–  Large streaming writes should use lustre (/n/data)
–  Small file I/O... Best to talk with us first
–  Don't hammer our home filesystem please :o)

54

"How Well Does My Code Scale?"

•  How long is a piece of string?
•  Many parameters must be fixed before this

question becomes meaningful
–  System hardware, software, and environment
–  Path through code
–  Data set

•  Scaling is also a function of rank layout
–  # ranks/node
–  Core/memory affinity

55

Performance Tuning on Odyssey

•  Very hard to quantify performance improvements
on system like Odyssey

•  All resources are shared
–  Compute nodes
–  Infiniband interconnect
–  Filesystems (many of which have different

performance characteristics!)
•  Odyssey is architected to achieve maximum

amount of science not best individual job runtime

56

Variability on Odyssey

•  Should expect some amount of variability run to
run in most cases

•  It is not possible to achieve "benchmark
conditions" on this system; it is production
environment

•  Other sources of variability
–  IB statically routed
–  VM history of node

57

MPI Latency on Odyssey

58

Unidirectional Bandwidth on Odyssey

59

Application Scaling

•  Programmers often use Amdahl's law to
estimate scaling

•  Speedup is limited by the time needed for the
serial portion of program

•  Sources of serial execution
–  I/O
–  Startup/shutdown
–  Synchronization points

60

Amdahl's Law

61

Other Performance Issues

•  Amdahl's Law is theoretical limit of speedup
–  Not that useful IMHO...

•  Other important factors are communication
overhead and load balancing

•  Communication overhead
–  You can never achieve perfect speedup even if all

execution can be parallelized
–  Communication overhead will often dominate for

many codes at large PE count

62

Load Balancing

•  A parallel program will only run as fast as the
slowest rank

•  Should distribute workload evenly across ranks
•  Often most difficult part of parallel programming!

–  Often good serial algorithms work poorly in parallel
–  Sometimes better to change algorithms entirely
–  May want to duplicate computational work rather than

add communication overhead
–  Check literature

63

Good Load Balancing

64

Poor Load Balancing

65

Scaling Application Workload

•  As you add more ranks you should increase
problem size

•  Increasing rank count with fixed problem size
leads to communication overhead dominating
run time
–  Amount of work per rank decreases
–  Can occasionally see "superscaling" where speedup

is better than linear at large rank counts
–  This is due to resident set fitting entirely in cache

66

MPI Debugging

•  Totalview is good for deterministic problems on
small scale
–  See FAS RC web site for instructions
–  Has a lot of useful functionality
–  Hard to use in production batch environment like

Odyssey
•  Remember printf changes timing!!
•  Can use wrappers

–  Write MPI_ routine that calls PMPI_

67

Debugging Large Parallel Jobs

•  Bugs often only happen at scale and with
optimization turned on
–  Most non-trivial bugs are due to race conditions

•  Debugging hangs
–  Attach gdb to rank 0 and some other random rank
–  Can usually figure out location of the problem

•  Debugging non-deterministic crashes
–  Observe behavior as you vary rank count
–  Selectively dump core files

68

Conclusions

•  MPI library is standard for writing parallel
scientific applications

•  Will be supported for longer than science will be
interesting!

•  Learning curve is shallow for API but steep for
scaling to large # PE's

•  Odyssey is a fantastic resource for academic
researchers wanting to develop parallel codes

69

Any Questions?

•  Harvard Research Computing Web Site
–  http://hptc.fas.harvard.edu/

•  Email
–  rchelp@fas.harvard.edu
–  kaltz@fas.harvard.edu

70

