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FAS IT Research Computing

* Provide compute resources to FAS and SEAS
for research purposes

Leverage FAS IT infrastructure
Architect and manage RC resources
Support both shared and dedicated hardware

Also have expertise on staff
— Domain level
— Programming
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What is Odyssey?

* Generic name for RC resources is "odyssey"
* This is the name of the original cluster

— 4096 core Infiniband cluster
— Originally listed as #60 on Top500!
* Now it is just the alias for the login pool
« There are many compute and storage resources

available
— 6000+ cores
— PB+ storage

Rl
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Using RC Resources

» Users login to access node pool
— odyssey.fas.harvard.edu

« Compute resources accessed via LSF batch
gueuing system

« Software environment controlled via modules

Ability to run parallel jobs
— Many parallel applications installed on Odyssey

— You can also run your own parallel code... so let's get
programming!

4
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What is parallel computing?

 Doing calculations concurrently (“in parallel™)
 |nstruction level parallelism happens

“automagically”
— Intel Harpertown can execute 4 flops/tick

 Thread and process level parallelism must be

explicitly programmed
— Some compilers offer autoparallelism features

« Type of parallel computing available depends on
compute infrastructure

Rl
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Processing Element (PE)

. ]
« Almost all CPU’ s in Odyssey are multicore

Each core can execute instructions and is called
a “processing element” in this presentation

Dual CPU Core Chip

1
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Shared Memory Computer Architecture

« PE’ s operate independently but share memory
resources (“global address space”)

=]
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Shared Memory Parallel Programming

* Multiple execution contexts have the same
“view” of all or some of the logical address

space

* Programs use symmetric multi-processing
(SMP) systems like Dell M600 Harpertown
blades in Odyssey

— may have non-uniform memory architecture (NUMA)
(some lliad nodes are Opteron, Nehalems are here!)

« Scientific programmers usually use OpenMP,
Posix Threads (Pthreads), or MPI
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Distributed Memory Computer

« PE’ s have local memory and require a network
to communicate with other PE’ s
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Distributed Memory Parallel Programming

« “Message passing” provided by a library

* Multiple execution contexts with their own
address space pertaining to local memory

* Programs are run on any type of system that can
communicate over a network
— MPI jobs on Odyssey use an Infiniband network

* Message passing libraries before MPI
— Proprietary library from system vendor
— PVM for network of workstations

Rl
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What is MPI?

 MPI (Message Passing Interface) is a library
containing a set of standardized names and

calling sequences enabling programs in Fortran,
C or C++ to be run in parallel

* These calling sequences are simply inserted into
existing code

* The resulting code is portable and can be run on
any parallel compute system

« 1.0 standard in 1994: MPI2 later

11
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MPI Implementations

* Available on Odyssey
— OpenMPI: http://www.open-mpi.org/

— MVAPICH: http://mvapich.cse.ohio-state.edu/
* Vendor implementations

— Intel MPI, HP MPI

— IBM MPI, Cray MPI

 Original open source
— MPICH: http://www.mcs.anl.gov/research/projects/

mpich2/

Rl
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Advantages of MPI

Programmer has ultimate control over how and
when messages are passed between PE’ s

Resulting code is portable
MPI is a standard

Multiple implementations are available
— Some are open source

All HPC interconnects are supported
Performance is usually good
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Disadvantages of MPI

* Programmer has ultimate control over how and
when messages are passed between PE’ s

— Burden rests entirely on programmer

« Performance and execution can depend on
Implementation
« Debugging can be very difficult

— Scaling issues
— Synchronization and race conditions

Rl
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MPI| API

Rl

APl has >100 routines
Most codes use a small subset

Many books and tutorials explain semantics and
provide examples

— http://www.mcs.anl.gov/research/projects/mpi/

— https://computing.linl.gov/tutorials/mpi/

MPI standard is online

— http://www.mpi-forum.org/

Easy to teach yourself (mostly)
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MPI| Programs

* MPI programs on Odyssey use a unique process
for each MPI rank

 Each rank will run on one PE

 MPI processes are launched out of band over
GbE

— ssh "fan-out" that scales to large node count
— daemons provide environment, etc

« Running multiple copies of executable across all
PE's

Rl
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“Hello World” MPI Code

#include "mpi.h"
#¥include ==tdio.h=
#include <=ys/utsname.h=

int main{int argc, char *argv[]) {
int numtasks, rank, rc, 1=0;
struct utsname u;
rc = MPI_Init{8argc,8argy);
if (rc != MPI_SUCCESS) {
printf {"Error starting MPI program. Terminating.‘n");
MPI_Abort (MPI_COMM_WORLD, rc);

N
J

MPI_Comm_size{MPI_COMM_WORLD ,&numtasks);
MPI_Comm_rank{MPI_COMM_WORLD ,8xank );

uname (&) ;
printf {"Number of tasks= %d My rank= ¥d from %s\n", numtasks,rank,u.nodename);

MPI_Finalize();
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Running “Hello World” MPI Code

The output {if any) follows:

Number of tasks= 4 My rank= 3 from herold4@s.rc.fas.harvard.edu
Number of tasks= 4 My rank= 1 from herol3l6.rc.fas.harvard.edu
Mumber of tasks= 4 My rank= 2 from herozZ?716.rc.fas.harvard.edu
Number of tasks= 4 My rank= 8 from herolll4.rc.fas.harvard.edu

TID  HOST_NAME  COMMAND_LINE STATUS TERMINATION_TIME

herolll4 Aa. a6/12/2089 15:4
herol316 Ja. a6/12/2089 15:4
hero2716 Ja. g ae/12/2009 15:4
3 herold48s Q. a6/12/26089 15:4
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Communicating Using MPI: Collectives

« MPI has an extensive number of routines for
sending data between all ranks in a

communicator
 These are called “collective” routines

* These are much easier to program than routines
communicating between only two ranks

* Routines have been optimized
« Will not scale to large # of PE’ s (ranks)
* Not appropriate for large memory jobs

____________________________________________________________________________________________|
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MPI| Bcast(buffer,count,type,source)

JOSS300T ] 4—

—» data

Broadcast
—_—

Fl&| |
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Collective Routines

* Reductions, scatter, gather, barrier
« Can account for striding, various data types

« Buffer does not have to be divisible by rank
count
 Does not have to be between all ranks

— Can create subsets of ranks using custom
communicators

 MPI_Barrier will synchronize all ranks
— You will rarely need to do this!

Rl
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MP1_Alltoall()
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Collectives Summary

« Substitute for more complex sequence of sends
and receives

— MPI does the work, not the programmer

 No message tags needed
— MPI keeps track of messages, ensures progress

« Calls block until they are locally complete
* Routines may or may not synchronize across

ranks
— NOT equivalent to MPI_Barrier

Rl
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Point to Point Communication

 Message sent from one rank to another rank
e Also called “send and receives”

« 8 basic types of sends

— 4 communication modes
 standard, buffered, synchronous, ready

— blocking vs non-blocking
“One-sided” communication in MPI2

— More on this later

Rl
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Why So Many Kinds?

* Do ranks synchronize?

« Will message ever be buffered on sending or
receiving side?
— Who manages the buffer?

 How do | know when buffer is safe to be reused?

 How do | know when message has been
received?

Rl

INFORMATION 25
TECHNOLOGY




Standard Mode

* This is probably what you will want to use
— Hides most details from programmer

— Does not (necessarily) synchronize ranks
— MPI determines whether to use system buffer

* Blocking vs non-blocking
— Buffer safe to use after blocking call returns

— Must use additional MPI polling/test routines for non-

blocking
— Non-blocking routines allow overlap of computation

and communication
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Quiz: Will This Deadlock?

/% Blocking 3end Deadlock Example */

if (rank == 8) {
dest = 15 src = 1;
rc = MPI_Send{sbuf, size, MPI_INT, dest, tag, MPI_COMM_WORLD);
rc = MPI_Recv{rbuf, size, MPI_INT, src, tag, MPI_COMM_WORLD, &Stat);

1
else if {rank == 1) {

dest = 85 src = 8;

rc = MPI_Send{sbuf, size, MPI_INT, dest, tag, MPI_COMM_WORLD);

rc = MPI_Recv{rbuf, size, MPI_INT, src, tag, MPI_COMM_WORLD, &Stat);
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TECHNOLOGY

27



Answer: It Depends!!

« One factor is that standard blocking send may or

may not synchronize ranks
« Synchronization depends on whether "eager” or

"rendezvous” protocol is used
— Rendezvous synchronizes ranks and minimizes use

of system buffers
— This is usually a runtime tunable based on message

size; default usually ~16-64KB
— Exact behavior dependent on implementation type of

interconnect (RDMA will usually override)
28
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Make Sure You Code Correctly

* Always match send/recv
— Avoid "head to head" like my deadlock example

« Use non-blocking if you want to scale to large
rank counts

* Underlying protocols/buffering will vary with
iInterconnect type, MP| implementation, message
size and rank count, among other things
— Check MPI standard for correct behavior
— Just because it worked once doesn't mean bug free

Rl
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Point to Point Considerations

 Need to avoid deadlock situations

* Ensure rank pairs, tags and request handles
scale with # ranks
— Correct execution at largest anticipated scale

« Cannot access buffer until safe to do so
— Technically this may include read-only access!!

* Debugging is hard
— Actually can be really REALLY hard
— More on this later...

____________________________________________________________________________________________|
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User Defined Datatypes

. ]
 May create new datatypes based on MPI
primitive datatypes

 May be non-contiguous

« Several methods available
— Contiguous
— Vector
— Indexed
— Struct

31
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Misc MPI Functions

« Grid topologies
* Dynamic processes
« MPI'l/O

— More on this later

* There are probably some routines | have never
even heard of...

 Lots of references for all of these

____________________________________________________________________________________________|
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Parallelization Strategies

.
« Code has small memory footprint but long run
time
— Use collective communication routines
« Desire is to run “bigger” simulations than is
available with current SMP hardware
— Use point to point routines

 |/O bound
— Can read/write from each process and/or MPI 1/O
— 1/O is very complex topic though...

Rl
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Getting MPI in Your Environment

 FAS RC uses software modules
« Easiest to put module load command in startup

files
— Ensures any process will have correct environment

— Works for all MPI modules on Odyssey
— Only works if you are using same MPI for all jobs

* Put module load command in LSF script
— But make sure you can execute module command!!

Rl
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Running MPI Jobs

« Make sure your default environment does NOT
dump core files!!

— limit coredumpfile O
« Recent versions of MPI modules will have all

remote processes inherit environment of
submission shell

— This doesn't work for older OpenMPI| modules

* If you set manually remember that OpenMPI
needs to find orted in your path

Rl
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MPI| Launch Mechanisms

* MPI programs on Odyssey use a unique process

for each MPI rank
* Loose integration between LSF and MPI
— Node reservation and process launch decoupled
— Should use mpirun.Isf script to ensure processes are
scheduled on reserved nodes

— Do not use machinefiles
— Can launch script which then calls MPI binary

37
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Sample LSF Script

. ]
« Use —a to specify MP| implementation

« Use ptile to control how many MPI processes
are launched per node

#! /binfcsh

#ESUE -q short_parallel
#ESUE -n 2

#SUE -2 err

#ESUE -0 out

#ESUE -a openmpi

#SUE -R "span[ptile=1]"

mpirun.lsf ./a.out

Rl
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Parallel Queues on Odyssey

« * parallel queues + some others
— These run on 32 GB hero[01-32]* nodes on single IB

fabric
— Scheduled along with serial and other general

purpose jobs

« Special project queues
— These run on 32 GB hero[40-52]* nodes

— Different IB fabric than *parallel queues
— May pre-empt serial jobs that land on these nodes
(pre-emption means process is sent SIGSTOP)

39
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Cleaning Up Remote Processes

* |t is responsibility of MPI implementation to tear
down and clean up remote processes

— Use timeout mechnism
— Some implementations do a better job than others...

* Programmer should help by checking error
conditions and calling Finalize/Abort on all ranks

* Odyssey users may log into remote nodes
themselves and Kkill rogue processes they own
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MPI Tunables

« All MPIl implementations have many runtime
tunables
* Most of them are for performance

— The defaults are usually good
— Can waste a lot of time fiddling with these

« A few might be critical for code to function

properly
— Disable mpi_leave pinned for OpenMPI

— This will be covered later in the talk

Rl

INFORMATION
TECHNOLOGY

41




MPI| and Threads

 MPI standard defines "thread compliant”
— All MPI calls must be "thread safe”
— Blocking routines block calling thread only

« Specific MPI routines to handle threads

— MPI_Init_thread
— Specifies level of threading support needed
— What if you don't alert MPI to thread use?

— How does message progress happen?

42
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"Thread Safe" MPI

* Most MPI implementations claim to be "thread
safe”

— But what does this really mean?

« Sometimes requires linking a special version of
the MPI library

« Usually ok to have only one thread calling all
MPI routines (MPI_THREAD_ FUNNELED)

* Would recommend against "threaded"” MPI
programming model in general

INFORMATION
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OpenMPI 1.3.2 Release Notes

MPI_THREAD_MULTIPLE support is included, but is only lightly tested.
It likely does not work for thread-intensive applications. HNote
that *only* the MPI point-to-point communication functions for the
BETL 's listed above are considered thread safe. 0Other support

functions {e.g., MPI attributes) have not been certified as safe
when simultaneously used by multiple threads.

Note that Open MPI's thread support is in a fairly early stage; the
above devices are likely to *work*, but the latency is likely to be
fairly high. Specifically, efforts so far have concentrated on
*correctness¥*, not *performance* (yet).
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Parallel |1/0O

« Large complex but very important topic...
— Needs its own presentation

« Often local scratch is good option
— Don't use /tmp, use /scratch

— Clean up after yourself!
* Odyssey has many parallel filesystem options

— http://hptc.fas.harvard.edu/odyssey/faq/filesystems
« Should parallelism be at application or filesystem

level? Or both?

45
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MPI 1/O

 MPI I/O was added to MPI12 standard
« Solves many issues of programming parallel 1/O
but mostly silent on performance
— Shared file pointers
— Collective read/write
— Portable data representation

« Performance requires a smart programmer,
good MPI implementation, and great filesystem!

« Check Web for references/tutorials

Rl
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MPI Over Infiniband

* Infiniband (IB) is an open standard for a high
speed low latency switched network

— http://www.infinibandta.org/
* Requires special hardware and software
Capable of remote DMA (RDMA) zero-copy
transfers

« Performance results measured on Odyssey

— Latency: 1.2 usec
— Bandwidth: 1.2 GB/s

INFORMATION
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IB "verbs"

* |B does not have an API

* Actions are known as "verbs"
— Services provided to ULP
— Send verb, receive verb, etc

* On Odyssey we use the open source OFED
distribution from Openfabrics to provide verbs to

our MPI implementations

Rl
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Remote DMA (RDMA)

« HCA directly sends/receives from RAM
 No involvement from main CPU

« But...
— OS can change virtual <-> physical address mapping

at any time!!
— This creates a race condition between HCA sending

data and VM mapping changes
« RDMA not just used in IB

Rl
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Solution: Register Memory

« Tell OS not to change mapping
— This is called "pinning" memory

— Guarantees buffer will stay in same physical location
until HCA is done

* In IB verbs this is called "registering”" memory
— Static virtual <-> physical mapping
— Notifies HCA of mapping
— Pinned pages cannot be swapped

— This is very expensive operation

Rl
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MPI Memory Agnostic

« MPI standard allows ANY buffer to be used in
send/recv

 MPI standard tried to address RDMA memory
Issues in MPI2

— One-sided operations (MP1_Put/MPI_Get)
— MPI_Alloc_mem

— But no one uses these!!

» Users want RDMA performance for any MPI
routine
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Why Do We Care??

* This may create problems

— fork()/exec()
— http://www.open-mpi.org/faq/?category=openfabrics#ofa-fork

* By default most MPI implementations intercept

malloc library call
— This can usually be disabled but you risk MPI being

unaware of memory being returned to OS

— This can happen anyway!!
— Can control cache via mpi_leave pinned tunable (and

related parameters)
52
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General Performance Issues

* Good rule of thumb for estimating performance
— Memory accesses (load/store) ~nanoseconds
— Interconnect (MPI send/recv) ~microseconds

— 1/O (read/write) ~milliseconds

* Important to understand where the "bottleneck”
occurs

* More abstraction/virtualization usually means
worse performance

53
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Always be Aware of Resource Usage!

* Are you going to run out of memory?
— Most nodes on Odyssey have 32 GB
— Paging/swapping will kill performance and probably
the node...
* Do you need to do lots of I/O?
— Match filesystem with 1/O workload
— Large streaming writes should use lustre (/n/data)
— Small file 1/O... Best to talk with us first
— Don't hammer our home filesystem please :0)

Rl
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oes My Code Scale”?”

"How Well C

 How long is a piece of string?
« Many parameters must be fixed before this

question becomes meaningful
— System hardware, software, and environment
— Path through code
— Data set
« Scaling is also a function of rank layout
— # ranks/node

— Core/memory affinity
55
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Performance Tuning on Odyssey

* Very hard to quantify performance improvements

on system like Odyssey
 All resources are shared

— Compute nodes

— Infiniband interconnect
— Filesystems (many of which have different

performance characteristics!)

« Odyssey is architected to achieve maximum
amount of science not best individual job runtime

56
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Variability on Odyssey

« Should expect some amount of variability run to
run in most cases

|t is not possible to achieve "benchmark
conditions” on this system; it is production
environment

« Other sources of variability

— |B statically routed
— VM history of node
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MPI| Latency on Odyssey

OSU Latency

ConnectX DDR OpenMPI 1 hop -
ConnectX DDR OpenMPI 5 hops

Latency (usec)
($a]
T
1
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Unidirectional Bandwidth on Odyssey

OSU Unidirectional Bandwidth
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Application Scaling

Programmers often use Amdahl's law to
estimate scaling

Speedup is limited by the time needed for the
serial portion of program

Sources of serial execution

- 1/O
— Startup/shutdown
— Synchronization points
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Amdahl's Law
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Other Performance Issues

 Amdahl's Law is theoretical limit of speedup
— Not that useful IMHO...

« Other important factors are communication
overhead and load balancing

« Communication overhead

— You can never achieve perfect speedup even if all
execution can be parallelized

— Communication overhead will often dominate for
many codes at large PE count

Rl
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Load Balancing

. ]
* A parallel program will only run as fast as the
slowest rank

« Should distribute workload evenly across ranks

« Often most difficult part of parallel programming!
— Often good serial algorithms work poorly in parallel
— Sometimes better to change algorithms entirely

— May want to duplicate computational work rather than
add communication overhead

— Check literature

Rl
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Good Load Balancing

100%
900, — — —
80%
70%
60%
50% & Communication
40% | | | | | | | Compute
30%
20%
10%
0%
Rank 0 Rank 1 Rank 2 Rank 3
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Poor Load Balancing

e
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Scaling Application Workload

* As you add more ranks you should increase

oroblem size
ncreasing rank count with fixed problem size

eads to communication overhead dominating

run time
— Amount of work per rank decreases
— Can occasionally see "superscaling" where speedup

IS better than linear at large rank counts
— This is due to resident set fitting entirely in cache

66
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MPI Debugging

« Totalview is good for deterministic problems on

small scale
— See FAS RC web site for instructions

— Has a lot of useful functionality
— Hard to use in production batch environment like

Odyssey
 Remember printf changes timing!!

« Can use wrappers
— Write MPI_ routine that calls PMPI_

Rl
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Debugging Large Parallel Jobs
.- 000001
* Bugs often only happen at scale and with
optimization turned on
— Most non-trivial bugs are due to race conditions

* Debugging hangs
— Attach gdb to rank 0 and some other random rank

— Can usually figure out location of the problem
* Debugging non-deterministic crashes

— Observe behavior as you vary rank count

— Selectively dump core files

Rl
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Conclusions

* MPI library is standard for writing parallel
scientific applications

« Will be supported for longer than science will be
interesting!

« Learning curve is shallow for API but steep for
scaling to large # PE's

« Odyssey is a fantastic resource for academic
researchers wanting to develop parallel codes
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Any Questions?

« Harvard Research Computing Web Site
— http://hptc.fas.harvard.edu/

 Emall
— rchelp@fas.harvard.edu

— kaltz@fas.harvard.edu
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