
Introduction to Parallel
Programming and MPI

Paul Edmon

FAS Research Computing

Harvard University

Outline

• What is parallel computing?

• Theory

• Message Passing Interface

Parallel vs. Serial

• Serial: A logically
sequential execution of
steps. The result of
next step depends on
the previous step.

• Parallel: Steps can be
contemporaneously and
are not immediately
interdependent or are
mutually exclusive.

1 2 3

1

2

3

t

CPU 1

CPU 1

CPU 2

CPU 3

High Performance Computing (HPC)

• Goal: Leverage as much computer
power as possible with as much
efficiency as possible to solve
problems that cannot be solve by
conventional means

• Sub Types
– Algorithm and Single Chip

Efficiency

– High Throughput Computing

– High I/O Computing

– Tightly Coupled Parallel Computing

Scaling

• Weak Scaling
– Keep the size of the problem per core the same, but

keep increasing the number of cores.

– Ideal: Amount of time to solution should not change

• Strong Scaling
– Keep the total size of the problem the same but keep

increasing the number of cores.

– Ideal: Time to completion should scale linearly with
the number of cores

• Reasons for Deviation
– Communications Latency

– Blocking Communications

– Non-overlapped communications and computation.

– Not enough computational work

Amdahl’s Law

• The maximum you can speed up any code is
limited by the amount that can be effectively
parallelized.

• In other words: You are limited by the
mandatory serial portions of your code.

t

Serial

Parallel

Types of Parallelization

• SIMD

• Thread

• Multinode

SIMD

• Single Instruction Multiple Data

• Vectorization
– A(:)=B(:)+C(:)

• Processors natively do this, compilers optimize for it.
– SSE (Streaming SIMD Extensions): 128 bit register, a=a+b

– AVX (Advanced Vector Extensions): 128 bit register, a=a+b -> 256 bit register a=b+c

• Note on Optimization Flags:

– -O0: No optimization

– -O1: Safe optimization

– -O2: Mostly Safe optimization

– -O3: Aggressive optimization

• Always check your answers after your optimize to make sure that you get the same answer back. This is true for
any time you recompile or build on a new system. If there are differences make sure they are minor with respect
to your expected code outcome.

Core

Node

Thread

• Single Node, program is
broken up into threads

• Libraries: OpenMP,
pThreads, Cilk

• SMP: Symmetric
multiprocessing

• Threads have access to the
same memory pool and
thus do not have to
communicate

Core Core

Core Core

Core Core

Core Core

Processor Processor

Memory

Multinode

• Program is broken up into
ranks, each rank runs a part
of the code

• Ranks run on multiple
nodes

• Ranks do not share memory
so they must communicate
with each to share
information

• Libraries: MPI

Node

Core Core

Core Core

Core Core

Core Core

Processor Processor

Memory

Node

Core Core

Core Core

Core Core

Core Core

Processor Processor

Memory

Network

Is my code parallelizable?

• Does it have large loops that repeat the same commands?

• Does your code do multiple tasks that are not dependent one
another? If so is the dependency weak?

• Can any dependencies or information sharing be overlapped with
computation? If not is the amount communications small?

• Do multiple tasks depend on the same data?

• Does the order of operations matter? If so how strict does it have
to be?

Examples

• Computational Fluid Dynamics

• N-Body and NAMD

• Radiative Transfer and Image Processing

• Markov Chain Monte Carlo

• Embarrassingly Parallel Work

General Guidelines for Parallelization

• Is it even worth parallelizing my code?
– Does your code take an intractably long amount of time to complete?

– Do you run single large models or do statistics on multiple small runs?

– Would the amount of time it take to parallelize your code be worth the gain in speed?

• Parallelizing Established Code vs. Starting from Scratch

– Established Code: May be easier/faster to do, but may not give good performance or scaling

– Start from Scratch: Takes longer but will give better performance, accuracy, and gives opportunity to turn a

black box code into a code you understand

• Test, test, test, etc.

• Use Nonblocking Communications as often as possible

• Overlap Communications with Computation

• Limit synchronization barriers

General Guidelines for Parallelization

• Limit Collective Communications

• Make messages small
– Only send essential information

• Make sure messages are well packaged
– Do one large send with data in a buffer rather than multiple sends

• Use MPI_Iprobe to grease the wheels of nonblocking communications

• Always post nonblocking receives before sends

• Watch out for communications deadlocks

• Be careful of your memory overhead

• Be careful of I/O
– Avoid having all the cores write to disk at once

– Alternately don’t have all I/O go through one rank.

General Guidelines for Parallelization

• Do as much as is possible asynchronously

• See if some one has parallelized a code similar to yours and look at what they did

• Beware of portions of the code that depend on order of operations

• Avoid gratuitous IF statements

• Do not use GOTO unless absolutely necessary

• KISS: Keep it simple stupid.

• Print statements are your friend for debugging

• So is replicating the problem on a small number of ranks

• Think at scale

Message Passing Interface

• MPI standard: Set by MPI Forum

• Current full standard is MPI-2
– MPI-3 is in the works which includes

nonblocking collectives

• MPI allows the user to control passing data

between processes through well defined
subroutines

• API: C, C++, Fortran

• Libraries: C#, Java, Python, R

• MPI is “agnostic” about network
architecture, all it cares is that the location
that is being run on can be addressed by
whatever transport method you are using

0 1 2

3 4 5

6 7 8

MPI Nomenclature

• Rank: The ID of a process, starts counting from 0

• Handle: The unique ID for the communication that is being done

• Buffer: An array or string, either controlled by the user or MPI, which is being transported

• Core: An individual compute element

• Node: A collection of compute elements that share the same network address, share memory, and
are typically on the same main board

• Hostfile: The list of hosts you will be running on

• MPI Fabric: The communications network MPI constructs either by itself or using a daemon

• Blocking: Means the communications subroutine waits for the completion of the routine before
moving on.

• Collective: All ranks talk to everyone else to solve some problem.

Available MPI Compilers on Odyssey

• OpenMPI
– Open Source project

– No daemon required

– Supports MPI-2

– Even releases are stable, odd releases are development

• MVAPICH2
– Ohio State University project

– Old versions require daemon, Latest version does not require daemon

– MPI-2.2 support as well as some support for MPI-3

• Intel MPI
– Version of MVAPICH2 optimized by Intel

– Requires daemon

• All compile for C, C++ and Fortran

MPI Hello World (Fortran/C)

PROGRAM hello

 !### Need to include this to be able to hook into the MPI API ###
 INCLUDE 'mpif.h'

 INTEGER*4 :: numprocs, rank, ierr

 !### Initializes MPI ###
 CALL MPI_INIT(ierr)

 !### Figures out the number of processors I am asking for ###
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

 !### Figures out which rank we are ###
 CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

 write(*,*) 'Process', rank, 'out of', numprocs

 !### Need this to shutdown MPI ###
 CALL MPI_FINALIZE(ierr)

END PROGRAM hello

#include <stdio.h>
/* Need to include this to be able to hook into the MPI API */
#include <mpi.h>

int main(int argc, char *argv[]) {
 int numprocs, rank;

 /* Initializes MPI */
 MPI_Init(&argc, &argv);

 /* Figures out the number of processors I am asking for */
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

 /* Figures out which rank we are */
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 printf("Process %d out of %d\n", rank, numprocs);

 /* Need this to shutdown MPI */
 MPI_Finalize();
}

Compiling and Running OpenMPI

Compiling and Running in other
versions of MPI

• MVAPICH2: Same as OpenMPI but hostfile is different
– OpenMPI: hostname slots=8

– MVAPICH: hostname:8

• Intel MPI: Same as MVAPICH2 but you first need to
start the daemon using the following line
– mpdboot –f hostfile –n 2

– mpirun –np 16 ./a.out

– Where n in this is the number of nodes

Stay tuned

• Next presentation by Plamen will cover more
complex topics such as:
– MPI Collectives

– Point to Point Communications

– Asynchronous Communications

– MPI and non-C and non-Fortran codes

– I/O in Parallel Environments

