Introduction to Parallel
Programming and MPI

Paul Edmon
FAS Research Computing

Harvard University

Outline

 What is parallel computing?

 Theory

 Message Passing Interface

Parallel vs. Serial

t >

. . CPU1
sequential execution of
steps. The result of

next step depends on
the previous step. CPU 1

e Parallel: Steps can be
contemporaneously and ¢py>»
are not immediately
interdependent or are

mutually exclusive.
CPU 3

Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000 -
1,000,000,000 -

100,000,000 4

10,000,000

1,000,000

100,000 -~

10,000 -

2,300 -

16-Cone SPASC T2

=Ciowg non T, \I #10-Cam Xaon Wasman-EX

Dual-Gore hanium 2@ s o 3
AMD K"J\. = un ﬂuunum‘mmh
FOWERS @ =Bl Gw:\n:‘-l Bon Mohakem-EX

Itanum 2 with K8 cachod Sl 2000
AKD K Kmf? Inll').u.llm I:?Iumn

anism 2 @ E:FE Hua
& AMD KR
Pailim 4 ®iarton W Alem
':HE:};AH
curve shows transistor AMD K&
counl doubling every rary, Porium i
Two years S
BOMEE
et LL]
T I I 1
1980 1990 2000 2011

Date of introduction

High Performance Computing (HPC)

* Goal: Leverage as much computer
power as possible with as much
efficiency as possible to solve
problems that cannot be solve by
conventional means

e Sub Types

— Algorithm and Single Chip
Efficiency

— High Throughput Computing

—_— High I/O Computing FAS Grid Load last hour

— Tightly Coupled Parallel Computing

|
4

14:30 14:40 14:50 15: 00 15:10 15:20
-m Now: 12,8k Min: 11.6k Awvg: 12.7k Max: 13.2k
odes Now: 1.7k Min: 1.6k Avg: 1.7k Max: 1.7k
PUs Now: 20.5k Min: 19.5k Awvg: 20.5k Max: 20.6k
cs Now: 12.6k Min: 11.2k Avg: 12.4k Max: 13.1k

Weak Scaling

Scaling

— Keep the size of the problem per core the same, but

keep increasing the number of cores.

— Ideal: Amount of time to solution should not change

Strong Scaling

— Keep the total size of the problem the same but keep

increasing the number of cores.

— Ideal: Time to completion should scale linearly with

the number of cores

Reasons for Deviation

Communications Latency

Blocking Communications

Not enough computational work

Non-overlapped communications and computation.

Update Time [sec]
®

o
o

0.4

100

Update Time [sec]

°
=}
=

0.001
1

Weak Scaling (64° blocks)

T T T T T

T T

Slope = 0.0034

[IR TTT] R AR TIT] S S W ATt |

Lo

10 100 1000
Number of Cores

Strong Scaling (2003 grid)

104

UBREULELLL B R L B LR AL

T

T T T

[IR TTT] R AW R TIT] S SRt |

T

Slope = -0.9123

L1

7

covvvpnl o end vl

PRt

10 100 1000
Number of Cores

104

Amdahl’s Law

 The maximum you can speed up any code is

limited by the amount that can be effectively
parallelized.

* |[n other words: You are limited by the
mandatory serial portions of your code.

t >

Parallel

Types of Parallelization

e SIMD
e Thread

e Multinode

SIMD

Single Instruction Multiple Data

Vectorization
— A(:)=B(:)+C(:)

Processors natively do this, compilers optimize for it.
— SSE (Streaming SIMD Extensions): 128 bit register, a=a+b

— AVX (Advanced Vector Extensions): 128 bit register, a=a+b -> 256 bit register a=b+c

Note on Optimization Flags:
— -00: No optimization

— -01: Safe optimization
— -02: Mostly Safe optimization

— -03: Aggressive optimization

Always check your answers after your optimize to make sure that you get the same answer back. This is true for
any time you recompile or build on a new system. If there are differences make sure they are minor with respect
to your expected code outcome.

Thread

Single Node, program is
broken up into threads

Libraries: OpenMP,
pThreads, Cilk

SMP: Symmetric
multiprocessing

Threads have access to the
same memory pool and
thus do not have to
communicate

/ Processor

Core Core

<4

Core Core

Node

Memory

Processor \

Core Core

<

Core Core

Multinode

Program is broken up into
ranks, each rank runs a part
of the code

Ranks run on multiple
nodes

Ranks do not share memory
so they must communicate
with each to share
information

Libraries: MPI

/ Processor

Core
+ Node

Core

Core

Core

Memory

(&

Processor \

Core

Core

<

Core

/

Core

Network

/ Processor

Core Core
+ Node

Core

Core

Memory

Processor \

Core Core

+

Core

Core

Is my code parallelizable?

Does it have large loops that repeat the same commands?

Does your code do multiple tasks that are not dependent one
another? If sois the dependency weak?

Can any dependencies or information sharing be overlapped with
computation? If not is the amount communications small?

Do multiple tasks depend on the same data?

Does the order of operations matter? If so how strict does it have
to be?

Examples

Computational Fluid Dynamics

N-Body and NAMD

Radiative Transfer and Image Processing
Markov Chain Monte Carlo

Embarrassingly Parallel Work

General Guidelines for Parallelization

Is it even worth parallelizing my code?
— Does your code take an intractably long amount of time to complete?

— Do you run single large models or do statistics on multiple small runs?

— Would the amount of time it take to parallelize your code be worth the gain in speed?

Parallelizing Established Code vs. Starting from Scratch
— Established Code: May be easier/faster to do, but may not give good performance or scaling

— Start from Scratch: Takes longer but will give better performance, accuracy, and gives opportunity to turn a
black box code into a code you understand

Test, test, test, etc.
Use Nonblocking Communications as often as possible
Overlap Communications with Computation

Limit synchronization barriers

General Guidelines for Parallelization

Limit Collective Communications

Make messages small
— Only send essential information

Make sure messages are well packaged
— Do one large send with data in a buffer rather than multiple sends

Use MPI_lprobe to grease the wheels of nonblocking communications
Always post nonblocking receives before sends

Watch out for communications deadlocks

Be careful of your memory overhead

Be careful of I/O
— Avoid having all the cores write to disk at once

— Alternately don’t have all I/O go through one rank.

General Guidelines for Parallelization

Do as much as is possible asynchronously

See if some one has parallelized a code similar to yours and look at what they did
Beware of portions of the code that depend on order of operations

Avoid gratuitous IF statements

Do not use GOTO unless absolutely necessary

KISS: Keep it simple stupid.

Print statements are your friend for debugging

So is replicating the problem on a small number of ranks

Think at scale

Message Passing Interface

MPI standard: Set by MPI Forum

Current full standard is MPI-2

— MPI-3is in the works which includes
nonblocking collectives

MPI allows the user to control passing data
between processes through well defined
subroutines

API: C, C++, Fortran

Libraries: C#, Java, Python, R

MPI is “agnostic” about network
architecture, all it cares is that the location
that is being run on can be addressed by
whatever transport method you are using

MPI Nomenclature

Rank: The ID of a process, starts counting from 0

Handle: The unique ID for the communication that is being done

Buffer: An array or string, either controlled by the user or MPI, which is being transported
Core: An individual compute element

Node: A collection of compute elements that share the same network address, share memory, and
are typically on the same main board

Hostfile: The list of hosts you will be running on
MPI Fabric: The communications network MPI constructs either by itself or using a daemon

Blocking: Means the communications subroutine waits for the completion of the routine before
moving on.

Collective: All ranks talk to everyone else to solve some problem.

Available MPI Compilers on Odyssey

OpenMPI
— Open Source project

— No daemon required
— Supports MPI-2

— Evenreleases are stable, odd releases are development

MVAPICH2
— Ohio State University project

— Old versions require daemon, Latest version does not require daemon

— MPI-2.2 support as well as some support for MPI-3

Intel MPI
— Version of MVAPICH2 optimized by Intel

— Requires daemon

All compile for C, C++ and Fortran

MPI Hello World (Fortran/C)

PROGRAM hello #tinclude <stdio.h>
/* Need to include this to be able to hook into the MPI API */
1### Need to include this to be able to hook into the MPI API ### #include <mpi.h>

INCLUDE 'mpif.h'
int main(int argc, char *argv[]) {

INTEGER*4 :: numprocs, rank, ierr int numprocs, rank;
I#t# Initializes MPI ### /* Initializes MPI */
CALL MPI_INIT(ierr) MPI_Init(&argc, &argv);
I### Figures out the number of processors | am asking for ### /* Figures out the number of processors | am asking for */
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr) MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
I### Figures out which rank we are ### /* Figures out which rank we are */
CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr) MPI_Comm_rank(MPI_COMM_WORLD, &rank);
write(*,*) 'Process', rank, 'out of', numprocs printf("Process %d out of %d\n", rank, numprocs);
I1### Need this to shutdown MPI ### /* Need this to shutdown MPI */
CALL MPI_FINALIZE(ierr) MPI_Finalize();

}

END PROGRAM hello

Compiling and Running OpenMPI

lers-13.0.

tel-latest.

JSinteled4/libimnf.30: warning: i : feupdateenv is not implemented and will always fail

-np 16 —--hostfile hostfile
of 1a
of
of
of
aof
of
of
of
of
of
of
aof
of
of
of
of

H H HHHH
2]
0 0
I L
w1 R
5 oo BB E S B F

H
o
(%]
I

=

[I U = R T T T TR T

H
(]
4]
I

I

H
3]
5

o -

DpEoOoDQODR0QEDD0ODQ
[=1 =]
l‘fl‘fl‘fl‘fﬂﬁﬂﬁl‘fl‘fl‘fﬂﬁﬂﬁﬁ‘?:

[=]

P
E
P
P
e
P
I3
P
E
P
P
e

p

mH

Compiling and Running in other

versions of MPI

* MVAPICH2: Same as OpenMPI but hostfile is different
— OpenMPI: hostname slots=8

— MVAPICH: hosthame:8

* |ntel MPI: Same as MVAPICH2 but you first need to
start the daemon using the following line

— mpdboot —f hostfile —n 2
— mpirun —np 16 ./a.out

— Where n in this is the number of nodes

Stay tuned

* Next presentation by Plamen will cover more
complex topics such as:

— MPI Collectives

— Point to Point Communications

— Asynchronous Communications

— MPI and non-C and non-Fortran codes

— |/O in Parallel Environments

