-84 HARVARD
¥ Faculty of Arts and Sciences

RESTARCH COMPUTNG

ODYSS

HARVARD FAS =
RESEARCH COMPUTING [ll="

Introduction to OpenMP

Paul Edmon
ITC Research Computing Associate

FAS Research Computing 4

Faculty of Arts and Sciences
RESLARCH COMPUITNG

Overview HARVARD

 Threaded Parallelism
 OpenMP Basics
* OpenMP Programming

* Benchmarking

FAS Research Computing

Threaded Parallelism

Shared Memory

Single Node

Non-uniform Memory
Access (NUMA)

One thread per core

FAS Research Computing

Threaded Languages

 PThreads
* Python
* Perl

 OpenCL/CUDA

 OpenACC

 OpenMP

FAS Research Computing

s HARVARD
¥ Faculty of Arts and Sciences

RESEARCH COMPUTNG

OpenMP Basics

FAS Research Computing

What is OpenMP? oy o s o s

RESTARCH COMPJUTNG

* OpenMP (Open Multi-Processing)

— Application Program Interface (API)
— Governed by OpenMP Architecture Review Board

 OpenMP provides a portable, scalable model
for developers of shared memory parallel
applications

* The API supports C/C++ and Fortran on a
wide variety of architectures

Goals of OpenMP e

RESEARCH COMPJITNG

Standardization

— Provide a standard among a variety shared memory architectures /
platforms

— Jointly defined and endorsed by a group of major computer hardware
and software vendors

Lean and Mean

— Establish a simple and limited set of directives for programming shared
memory machines

— Significant parallelism can be implemented by just a few directives

Ease of Use
— Provide the capability to incrementally parallelize a serial program

Portability
— Specified for C/C++ and Fortran

— Most majors platforms have been implemented including Unix/Linux and
Windows

— Implemented for all major compilers

FAS Research Computing

OpenMP Programming Model HARVARD

Faculty of Arts and Sciences

RESTARCH COMPUTNG

Shared Memory Model: OpenMP is designed
for multi-processor/core, shared memory machines

Thread Based Parallelism: OpenMP programs accomplish parallelism
exclusively through the use of threads

Explicit Parallelism: OpenMP provides explicit (not automatic)
parallelism, offering the programmer full control over parallelization

Compiler Directive Based: Parallelism is specified through the use of
compiler directives embedded in the C/C++ or Fortran code

1/0: OpenMP specifies nothing about parallel 1/O. Itis up to the
programmer to ensure that the I/O is conducted correctly in the context
of the multi-threaded program

MPI: OpenMP can interoperated with MPI to create a hybrid model of
parallelism

FAS Research Computing

Fork-Join Model

Faculty of Arts and Sciences
RESEARCH COMPUITNG

\' FER ;R — "% o threads =,
threads . - EE. ,
. threads .
parallel region parallel region parallel region

« All OpenMP programs begin as a single tread — the master thread. The master thread
executes sequentially until the first parallel region is encountered

« FORK: The master thread then creates a team of parallel threads

« The statements in the program that are enclosed by the parallel region construct are
executed in parallel among the team threads

« JOIN: When the team threads complete the statements in the parallel region, they
synchronize and terminate leaving the master thread

* Note that starting the destroying threads is expensive in OpenMP so it is best to start

the threads once and destroy them once. -
FAS Research Computing 4

Components of OpenMP HARVARD

Faculty of Arts and Sciences
RE

SLARCH COMPJTNG

The OpenMP APl is comprised of three components:
« Compiler Directives

* Runtime Library Routines

* Environment Variables

The application developer decides how to employ
these components. In the simplest case, only a few
of them are needed.

FAS Research Computing

Faculty of Arts and Sciences

Compiler Directives (Pragma) HARVARD

RESTARCH COMPUTNG

« Compiler directives (aka pragmas) appear as comments in
the source code and are completely ignored by compilers
unless you tell them otherwise — usually by specifying
appropriate compiler flags

« Compiler directives are used for various purposes, €.g.,
— Spawning a parallel region
— Dividing blocks of code among threads
— Distributing loop iterations among threads
— Synchronization of work among threads

« Compiler directives have the following syntax:
— sentinel directive-name [clause,...]

ISOMP PARALLEL DEFAULT(SHARED) PRIVATE(BETA,PHI)

#pragma omp parallel default(shared) private(beta, phi)

Run-Time Library Routines D

RESTARCH COMPUTNG

« OpenMP includes several run-time library routines

* These routines are used for various purposes such as:
— Setting and querying the number of threads
— Querying threads’ unique identifier (thread ID)
— Querying the thread pool size

INTEGER FUNCTION GET_NUM_THREADS()

#include<omp.h>
int omp_get_num_threads(void)

Environment Variables A e

RESTARCH COMPUTNG

 OpenMP provides several environment variables for controlling
execution of parallel code at run-time

* Note that all of these variables can also be set in the code itself or
via code inputs.

« These environment variables can be used for
— Setting the number of threads
— Specifying how loop iterations are divided
— Enabling/ disabling dynamic threads

» Setting OpenMP threads depends upon the shell you use:

setenv OMP_NUM_THREADS 8

export OMP_NUM_THREADS=8

Compiling OpenMP Programs

Compiler/Platform | __Compiler | ___Flag____

Intel icc -openmp
icpc
ifort
GNU gcc -fopenmp
g++
gl ’
gfortran

Intel: ifort —o omp_test.x omp_test.fO0 —openmp

GNU: gfortran—o omp_test.x omp_test.f90 —-fopenmp

FAS Research Computing

Running OpenMP on Odyssey N

RESTARCH COMPUTNG

(1) Compile your code, e.g.,
ifort —o omp_code.x omp_code.f90 —ompenmp —0O2

(2) Prepare a batch-job submission script
#!/bin/bash

#SBATCH -J omp_job

#SBATCH -o slurm.out

#SBATCH -e slurm.err

#SBATCH -p general

#SBATCH --mem=1750

#SBATCH -c 8

#SBATCH -N 1

export OMP_NUM_THREADS=$SLURM_CPUS PER_TASK
srun -c $SLURM_CPUS PER_TASK ./omp_test.x

(3) Submit the job to the queue
sbatch omp_test.run

FAS Research Computing 4

808 HARVARD
¥ Faculty of Arts and Sciences

RESEARCH COMPUTNG

OpenMP Programming

FAS Research Computing

Faculty of Arts and Sciences
RESLARCH COMPUITNG

OpenMP Directives Fortran HARVARD

Fortran Directives Format:

« All Fortran OpenMP directives must begin with a sentinel

« The accepted sentinels depend upon the type of Fortran source
- I$OMP, CSOMP, *SOMP

« Comments can not appear on the same line as a directive

« Several Fortran OpenMP directives come in pairs

ISOMP directive

[structured block of code]

ISOMP end directive

FAS Research Computing

Faculty of Arts and Sciences
RESLARCH COMPUITNG

OpenMP Directives C/C++ HARVARD

C/C++ Directive Format:

« All C/C++ directives begin with #pragma omp

« Case sensitive

» Directives follow conventions of the C/C++ standards for compiler directives
« Only one directive-name may be specified per directive

« Each directive applies to at most one succeeding statement, which must be
a structured block

#pragma omp directive

{

[structured block of code]

} FAS Research Computing

Parallel Region Construct N

RESTARCH COMPUTNG

A parallel region is a block of code that will be executed by multiple
threads. This is the fundamental OpenMP parallel construct

Fortran C/C++

ISOMP PARALLEL [clause...] #pragma omp parallel [clause ...]
IF (scalar_logical_expression) if (scalar_expression)
PRIVATE (list) private (list)
SHARED (list) shared (list)
DEFAULT (PRIVATE |[SHARED | default (shared | none)

NONE) firstprivate (list)
FIRSTPRIVATE (list) reduction (operator: list)
REDUCTION (operator: list) copyin (list)
COPYIN (list) num_threads (integer-
NUM_THREADS (scalar-integer- expression)

expression)

block
structured_block
ISOMP END PARALLEL

FAS Research Computing

Data Scope Attribute Clauses D e

RESTARCH COMPUTNG

« Data Scope Attribute Clauses are used in conjunction with several
directives (PARALLEL, DO/for, and SECTIONS) to control the
scoping of enclosed variables

« Because OpenMP is based upon the shared memory programming
model, most variables are shared by default

 Global variables include:
— Fortran: COMMON blocks, SAVE variables, MODULE variables
— C: File scope variables, static

* Private variables include:
— Loop index variables
— Stack variables in subroutines called from parallel regions

FAS Research Computing

Data Scope Attribute Clauses HARVARD

Faculty of Arts and Sciences
RESEARCH COMIPJTNG

 PRIVATE clause declares variables in its list to be private to each
thread

FORTRAN: PRIVATE (list)
C/C++: private (list)

« SHARED clause declares variables in its list to be shared
among all threads in the team

FORTRAN: SHARED (list)
C/C++: shared (list)

« DEFAULT clause allows the user to specify a default scope
for all variables in the lexical extent of any parallel region

FORTRAN: DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)
C/C++: default (shared | none)

FAS Research Computing

Important Runtime Routines HARVARD ..

SLARCH COMPUTNG

- OMP_SET _NUM_THREADS

— Sets the number of threads for the application

« OMP_GET NUM THREADS
— Polls the current setting for number of threads

« OMP GET THREAD NUM
— Tells you which thread number you are

. OMP_GET WTIME

— Timing routine

FAS Research Computing

Example: Parallel Region Fortran

program hello
implicit none
integer(4):: nthreads
integer(4):: tid
integer(4):: omp_get num_threads
integer(4):: omp _get thread num
I$omp parallel private(tid)
tid = omp_get_thread num()
write(6,*) "Hello World from thread =", tid
if (tid==0) then
nthreads = omp get num_threads()
write(6,”) "Number of threads =", nthreads
end if
I$omp end parallel
end program hello

-84 HARVARD
¥ Faculty of Arts and Sciences

RESTARCH COMPUTNG

Example: Parallel Region C/C++ N aanD

Faculty of Arts and Sciences

RESTARCH COMPUTNG

#include <iostream>
#include <omp.h>
using namespace std;
int main () {
int nthreads;
int tid;
#pragma omp parallel private(tid)
{
tid = omp_get_thread _num();
cout << "Hello World from thread =" << tid << endl;
if (tid == 0){
nthreads = omp_get num_threads();
cout << "Number of threads =" << nthreads << end|;

Work Sharing Constructs HARVARD

¥ Faculty of Arts and Sciences
RESEARCH COMINJTNG

* A work-sharing construct divides the
execution of the enclosed code region among
the members of the team that encounter it

* Work-sharing constructs do not launch new
threads

* There is no implied barrier upon entry to a
work-sharing construct, however there is an
implied barrier at the end of a work sharing
construct

Types of Work Sharing Constructs

DO / for - shares iterations
of a loop across the team.

Represents a type of "data
parallelism"

l master thread

FORK

ot e

JOIN

l master thread

SECTIONS - breaks work
into separate, discrete
sections. Each section is
executed by a thread. Can be
used to implement a type of
“functional parallelism"

\ master thread

master thread

-—

SINGLE - serializes a
section of code

master thread

El feam

l master thread

——

FAS Research Computing

DO/FOR Directives

88 HARVARD
L“¥ Faculty of Arts and Sciences

RESTARCH COMPUTNG

The DO / for directive specifies that the iterations of the loop immediately
following it must be executed in parallel by the team. This assumes a parallel
region has already been initiated, otherwise it executes in serial on a single

processor

This is the easiest, fastest, and most efficient way to parallelize your code.

Fortran

ISOMP DO [clause ...]
SCHEDULE (type [,chunk])
ORDERED
PRIVATE (list)
FIRSTPRIVATE (list)
LASTPRIVATE (list)
SHARED (list)
REDUCTION (operator | intrinsic
: list)
COLLAPSE (n)

do _loop

ISOMP END DO [NOWAIT]

C/C++

#pragma

for loop

omp for [clause ...]
schedule (type [,chunk])
ordered

private (list)

firstprivate (list)
lastprivate (list)

shared (list)

reduction (operator: list)
collapse (n)

nowait

FAS Research Computing

Example: DO/FOR Directive Fortran & HARvaro .

RESTARCH COMPUTNG

program vec_add_do
implicitnone
integer(4) :: chunk, i
integer(4), parameter :: n= 1000
integer(4), parameter :: chunksize = 100
real(4) :: a(n), b(n), c(n)

doi=1,n
a(i)=i*1.0
b(i) = a(i)
end do

chunk = chunksize
I$omp parallel shared(a,b,c,chunk) private(i)
I$omp do schedule(dynamic,chunk)

doi=1,n
c(i) = a(i) + b(i)
end do

ISomp end do nowait
ISomp end parallel
end program vec_add_do

FAS Research Computing x

Faculty of Arts and Sciences
RESLARCH COMPUTNG

Example: DO/FOR Directive C/C++ HARVARD

#include <iostream>
#include <omp.h>
using namespace std;
#define CHUNKSIZE 100
#define N 1000
int main(){
int i, chunk;
float a[N], b[N], c[N];
for (i=0;i<N;i++)
alil] = b[i] =i*1.0;
chunk = CHUNKSIZE;
#pragma omp parallel shared(a,b,c,chunk) private(i)
{
#pragma omp for schedule(dynamic,chunk) nowait
for (i=0;i<N;i++)
c[i] = al[i] + b[i];
}

return O;

Synchronization Constructs HARVARD ..

RESTARCH COMPUTNG

Since each thread is independent they can run at different speeds
and thus threads may complete different sections at different times
and get out of sync.

OpenMP provides a variety of Synchronization Constructs that
control how the execution of each thread proceeds relative to other
team threads

The BARRIER directive synchronizes all threads in the team

When a BARRIER directive is reached, a thread will wait at that
point until all other threads have reached that barrier. All threads
then resume executing in parallel the code that follows the barrier

ISOMP BARRIER

#pragma omp barrier

-84 HARVARD
¥ Faculty of Arts and Sciences

RESTARCH COMPUTNG

Benchmarking

FAS Research Computing 4

BenCh marki ng ::ﬁlﬁ\:é\ﬁjznd Sciences

RESTARCH COMPJUTNG

« Check top and see if your code is using the number of threads
you set.
— The process should be using number of threads x 100% of load

— Underloaded applications are caused by thread contention or
thread starvation.

 Run a scaling test
— Take the same amount of work and divide it between 1, 2, 4, 8,
etc. threads.
— lIdeal scaling would be that the amount of time it takes to do work
will half every time you double the number of threads.

« After you complete your scaling test look at results and set
thread count at the point where you still get appreciable
performance gains due to parallelization.

FAS Research Computing

ey HARVARD
LY Faculty of Arts and Sciences
L ™G

ESEARCH COMnY

Research Computing Help

https.//rc.fas.harvard.edu
Office Hours: Wednesdays noon-3pm

38 Oxford Street, 2" Floor Conference
Room

FAS Research Computing

Faculty of Arts and Sciences
RESLARCH COMPUITNG

Sections Directive HARVARD

« The SECTIONS directive is a non-iterative work-sharing construct. It specifies that
the enclosed section(s) of code are to be divided among the threads in the team

* Independent SECTION directives are nested withina SECTIONS directive. Each
SECTION is executed once by a thread in the team. Different sections may be
executed by different threads

Fortran C/C++
1ISOMP SECTIONS [clause ...] #pragma omp sections [clause ...]
PRIVATE (list) private (list)
FIRSTPRIVATE (list) firstprivate (list)
LASTPRIVATE (list) lastprivate (list)
REDUCTION (operator | intrinsic : reduction (operator: list)
list) nowait
{
1ISOMP SECTION #pragma omp section newline
block structured_block
1ISOMP SECTION #pragma omp section newline
block structured_block
1ISOMP END SECTIONS [NOWAIT] }
FAS Research Computing

Example: Sections Directive Fortran @& HARVARD ...

RESTARCH COMPUTNG

PROGRAM VEC_ADD_SECTIONS

INTEGER N, |

PARAMETER (N=1000)

REALA(N), B(N), C(N), D(N)

DOI=1,N

Al)=1*15

B(l) = | + 22.35

ENDDO
ISOMP PARALLEL SHARED(A,B,C,D), PRIVATE(])
ISOMP SECTIONS
ISOMP SECTION

DOI=1,N

C(l) = A(l) + B(l)

ENDDO
ISOMP SECTION

DOI=1,N

D(1) = A(l) * B(I)

ENDDO
ISOMP END SECTIONS NOWAIT
ISOMP END PARALLEL

END

FAS Research Computing)

Example: Sections Directive C/C++ @ Harvaro

RESTARCH COMPUTNG

#include <omp.h>
#define N 1000

main ()

{

inti;

float a[N], b[N], c[N], d[N];
for (i=0; i < N; i++) {

alil=1*1.5;
bli] =i+ 22.35;
}
#pragma omp parallel shared(a,b,c,d) private(i)
{
#pragma omp sections nowait
{

#pragma omp section

for (i=0; i < N; i++)
c[i] = a[i] + bIi;

#pragma omp section

for (i=0; i < N; i++)
d[i] = afi] * bfi];

} I* end of sections */

} I* end of parallel section */
} FAS Research Computing)

Reduction Clause e

SLARCH COMPJTNG

 The REDUCTION clause performs a reduction on
the variables that appear in its list

« A private copy for each list variable is created for
each thread. At the end of the reduction, the
reduction variable is applied to all private copies of
the shared variable, and the final result is written
to the global shared variable

FORTRAN: REDUCTION (operator | intrinsic: list)
C/C++: reduction (operator: list)

Faculty of Arts and Sciences

Example: Reduction Clause Fortran gy HARVARD

PROGRAM DOT_PRODUCT
INTEGER N, CHUNKSIZE, CHUNK, |
PARAMETER (N=100)
PARAMETER (CHUNKSIZE=10)
REALA(N), B(N), RESULT
DOI=1,N

Al)=1*1.0
B(l)=1*2.0

ENDDO

RESULT=0.0
CHUNK = CHUNKSIZE

ISOMP PARALLELDO

ISOMP& DEFAULT(SHARED) PRIVATE(l)

ISOMP& SCHEDULE(STATIC,CHUNK)

ISOMP& REDUCTION(+:RESULT)
DOI=1,N

RESULT =RESULT + (A(l) * B(1))
ENDDO

ISOMP END PARALLELDO
PRINT *, 'Final Result=", RESULT
END

RESTARCH COMPUTNG

FAS Research Computing

Faculty of Arts and Sciences
RESLARCH COMPUTNG

Example: Reduction Clause C/C++ HARVARD

#include <omp.h>

main () {

int 1, n, chunk;

float a[100], b[100], result;

n=100;

chunk = 10;

result = 0.0;

for (i=0;i<n;i++)
{
alil]=i1*1.0;
bli]=1* 2.0;
}

#pragma omp parallel for \
default(shared) private(i) \
schedule(static,chunk) \
reduction(+:result)
for(1=0;i<n;i++)

result = result + (a[i] * bl[i]);
printf("Final result= %f\n",result);

} FAS Research Computing)

