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Objectives

§ To advise you on the best practices for running parallel workflows on the 
FASRC cluster

§ To provide the basic knowledge required for (implementing and) running 
your parallel OpenMP and MPI applications efficiently on the FASRC cluster



Overview
§ Best Practices

§ Brief Introduction to Parallel Computing

§ Embarrassingly Parallel Jobs / Workflows

§ OpenMP Jobs / Workflows

§ MPI Jobs / Workflows

§ Hybrid (MPI+OpenMP) Jobs / Workflows



Best Practices (1)
§ Do small scale testing prior to large scale runs

§ Ensure your jobs will run at least 10 minutes

§ Make sure your jobs are well constrained

§ Make sure your data is on a filesystem that can handle the I/O load

§ Be aware of potential bottlenecks in your workflow

§ Be cognizant of your fairshare https://docs.rc.fas.harvard.edu/kb/fairshare/ 

https://docs.rc.fas.harvard.edu/kb/fairshare/


Best Practices (2)
§ Ensure your code is operating as expected

§ Understand the scaling of your code

§ Have your primary code in a git repo

§ Keep backups of critical data

§ Have checkpoints

§ Optimize your code and workflow
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What is High Performance Computing (HPC) ?

Frontier: ORNL Sierra: LLNL Cannon: Harvard

Using the world’s fastest and largest computers to solve large and complex 
problems.



Serial Computation

Traditionally software has been written for 
serial computations:

§ To be run on a single computer having a 
single Central Processing Unit (CPU) 

§ A problem is broken into a discrete set 
of instructions

§ Instructions are executed one after 
another

§ Only one instruction can be executed at 
any moment in time



Parallel Computation

In the simplest sense, parallel computing is the 
simultaneous use of multiple compute resources to 
solve a computational problem:

§ To be run using multiple CPUs
§  A problem is broken into discrete parts that can 

be solved concurrently
§  Each part is further broken down to a series of 

instructions
§  Instructions from each part execute 

simultaneously on different CPUs



Why use HPC ?
Save time and/or money: In theory, throwing more resources at a task will shorten its time to 
completion, with potential cost savings. Parallel clusters can be built from cheap, commodity 
components.

Major Reasons:

Solve larger / more complex problems: Many problems are so large and/or complex that it is 
impractical or impossible to solve them on a single computer, especially given limited computer 
memory.

Provide concurrency: A single compute resource can only do one thing at a time. Multiple computing 
resources can be doing many things simultaneously.

Use of non-local resources: Using compute resources on a wide area network, or even the Internet 
when local compute resources are scarce.



Applications of HPC (not a complete list)

§ Atmosphere, Earth, Environment, Space Weather
§ Physics / Astrophysics – applied, nuclear, particle, 

condensed matter, high pressure, fusion, photonics
§ Bioscience, Biotechnology, Genetics
§ Chemistry, Molecular Sciences
§ Geology, Seismology
§ Mechanical and Aerospace Engineering
§ Electrical Engineering, Circuit Design, 

Microelectronics
§ Computer Science, Mathematics

Image credit: LLNL
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Embarrassingly Parallel
§ Running many serial jobs in parallel, e.g.,

o Parameter Sweeps  
o Data Transfers
o Data Analysis Pipelines

§ When possible, use serial_requeue partition
§ Potential Problems/Bottlenecks

o Filesystem I/O
o Re-queue
o SLURM Thrashing

• Short runs
• Lots of scheduler queries



Submitting Large Number of Serial Jobs
§ Job Launcher Scripts

o Use scripting language (e.g., Bash, Python, Perl, R) to construct and submit jobs

§ SLURM Job Arrays
o Works best for individual tasks that take 10+ minutes

§ Single job: for loop in job-script
o Works best for many very short tasks (seconds)

Genuine Warning: Resist the urge to use Python / bash to create 1000s 
of files and submit each as a separate job

Reference: 
https://docs.rc.fas.harvard.edu/kb/submitting-large-numbers-of-jobs/ 

https://docs.rc.fas.harvard.edu/kb/submitting-large-numbers-of-jobs/


Job Launcher Scripts
§ Use scripting language (e.g., Bash, Python, R, Perl) to construct and submit jobs

§ Advantages
o Full Flexibility and Control

§ Disadvantage
o Can get rather complex depending on workflow

§ Examples:
o https://github.com/fasrc/slurm_migration_scripts

https://github.com/fasrc/slurm_migration_scripts


SLURM Job Arrays
§ Use SLURM job arrays to process data

§ Advantages
o Easy to use
o Quick
o Easy on the scheduler

§ Disadvantages
o Problems must fit into the Job Array style

§ Examples:
o https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/EP/Example1

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/EP/Example1


SLURM Job Arrays
§ #SBATCH --array=indexes

§ SLURM job script variables
o %A = JobId and %a = IndexID

Ex: $SBATCH -o stdout-%A_%a.o
o $SLURM_ARRAY_TASK_ID

Ex: srun -c 1 python serial_sum.py > output_${SLURM_ARRAY_TASK_ID}.out

1-10 1,2,3,4,5,6,7,8,9,10
2-20:2 2,4,6,8,10,12,14,16,18,20
1,3,5,7,11,21 1,3,5,7,11,21
2-20%2 2,4 then 6,8 then 10,12 …



https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/EP/Example1

SLURM Job Arrays Example
#!/bin/bash
#SBATCH -J array_test
#SBATCH -p test
#SBATCH -c 1
#SBATCH -t 00:20:00
#SBATCH --mem=4G
#SBATCH -o %A-%a.o
#SBATCH -e %A-%a.e
#SBATCH --array=100,200,300

# Load software environment
module load python/3.10.13-fasrc01

# Execute code
srun -c 1 python serial_sum.py > output_${SLURM_ARRAY_TASK_ID}.out

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/EP/Example1


Using SLURM Array Index in Python

import os
N = int(os.environ['SLURM_ARRAY_TASK_ID’])
res = serial_sum(N)
print(res)



Single Job: for loop in in job-script

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/EP/Example2

#!/bin/bash
#SBATCH -J test_job
#SBATCH -p test
#SBATCH -c 1
#SBATCH -t 00:20:00
#SBATCH --mem=4G
#SBATCH -o test_job.out
#SBATCH -e test_job.err

# Load software environment
module load python/3.10.13-fasrc01

# Execute code
for i in 100 200 300; do

 export inp=$i
 srun -n 1 -c 1 python serial_sum.py > output_${inp}.out

done

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/EP/Example2
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What is OpenMP ?
§ OpenMP = Open Multi-Processing

§ An Application Program Interface (API) that may be used to explicitly 
direct multi-threaded, shared memory parallelism

§ Comprised of three primary API components:
o Compiler Directives
o Runtime Library Routines
o Environment Variables



OpenMP Programming Model

§ Shared Memory

§  Single Node

§ One thread per core

§ Explicit Parallelism

§ Not designed to handle parallel I/O



Threading Languages Interfaces
Pthreads

OpenMP

OpenCL/CUDA

OpenACC

Python

R

Perl

MATLAB (PCT)

Others



Compiling OpenMP Programs
Compiler/Platform Compiler Flag

Intel
icx (C)

icpx (C++)
ifx (Fortran)

-qopenmp

GNU

gcc
g++
g77

gfortran

-fopenmp

Intel: 
 module load  intel/24.0.1-fasrc01
 icx –o omp_test.x omp_test.c –qopenmp

GNU: 
 module load gcc/13.2.0-fasrc01
 gcc –o omp_test.x omp_test.c –fopenmp

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/OpenMP 

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/OpenMP


Running OpenMP Programs (1)
Interactive / test jobs:

(1) Start an interactive bash shell
> salloc -p test -c 4 --mem=4G -t 0-06:00

(2) Load required modules, e.g.,
> module load gcc/13.2.0-fasrc01

(3) Compile (or use a Makefile)
> gcc –o omp_hello.x omp_hello.c –fopenmp

 (4) Set number of OpenMP threads
> export OMP_NUM_THREADS=4

(5) Run the executable
> ./omp_hello.x
[pkrastev@holy7c19314 Example1]$ ./omp_hello.x
Hello World from thread = 1
Hello World from thread = 3
Hello World from thread = 2
Hello World from thread = 0
Number of threads = 4



Running OpenMP Programs (2)
Batch Jobs:

(1) Prepare a batch-job submission script
#!/bin/bash

#SBATCH -J omp_hello       # Job name

#SBATCH -o omp_hello.out     # STD output

#SBATCH -e omp_hello.err     # STD error

#SBATCH -p test         # Queue / Partition

#SBATCH -t 0-00:30    # Time (D-HH:MM)
#SBATCH --mem=4000     # Reserved memory (default in MB)

#SBATCH -c 8           # Number of threads

#SBATCH -N 1           # Number of nodes

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load gcc/13.2.0-fasrc01 # Load required modules

srun -c $SLURM_CPUS_PER_TASK ./omp_test.x

(2) Submit the job to the queue
> sbatch run.sbatch



Example: Scaling - Compute PI in Parallel

Calculating PI in serial Calculating PI in parallel

Images credit: LLNL
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial##ExamplesPI

Monte-Carlo approximation of PI

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial


(1) Setup - get a copy of the code and compile it, e.g.,
> mkdir ~/OpenMP
> cd OpenMP
> git clone https://github.com/fasrc/User_Codes.git 

(2) Review the source code and compile the program
> cd User_Codes/Parallel_Computing/OpenMP/Example3
> module load intel/24.0.1-fasrc01
> make

(3) Run the program
> sbatch run.sbatch

(4) Explore the output (the “omp_pi.dat” file), e.g.,
> cat omp_pi.dat
Number of threads:  8
Exact value of PI: 3.14159
Estimate of PI:   3.14158
Time:   0.32 sec.

(5) Run the program with different thread number – 1, 2, 4, 8 – and record the run times for each case. This will be needed to compute 
the speedup and efficiency (NOTE: Currently set up to run directly with 1, 2, 4, 8 threads and generate speedup figure)

Example: Scaling - Compute PI in Parallel

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/Example3 

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/Example3


Example: Scaling - Compute PI in Parallel
How much faster will the program run?

)(
)1()(
nT

TnS =

Speedup: Time to complete the job 
on one thread

Time to complete the job 
on n threads

Efficiency:

n
nSnE )()( =

Tells you how efficiently you parallelize 
your code

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/Example3 

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/Example3


Example: Scaling - Compute PI in Parallel
You may use the speedup.py Python code to generate to calculate the speedup and 
efficiency. It generates the below table plus a speedup figure.

Nthreads Walltime Speedup Efficiency (%)

1 2.54 1.00 100.00

2 1.27 2.00 100.00

4 0.64 4.00 100.00

8 0.32 8.00 100.00

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/Example3 

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/Example3
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§  M P I = Massage Passing Interface

§  MPI is a specification for the developers and users of message passing libraries. By itself, 
it is NOT a library

§  MPI primarily addresses the message-passing parallel programming model: data is 
moved from the address space of one process to that of another process through 
cooperative operations on each process

§  Most recent version is MPI-3

§  Actual MPI library implementations differ in which version and features of the MPI 
standard they support

What is MPI?



MPI Programming Model
§ Originally MPI was designed for distributed memory 

architectures

§ As architectures evolved, MPI implementations adapted their 
libraries to handle shared, distributed, and hybrid architectures

§ Today, MPI runs on virtually any hardware platform
o Shared Memory
o Distributed Memory
o Hybrid 

§ Programing model remains clearly distributed memory model, 
regardless of the underlying physical architecture of the 
machine

§ Explicit parallelism – programmer is responsible for correct 
implementation of MPI  



Reasons for using MPI
§ Standardization - MPI is the only message passing specification which can be considered a standard. It is 

supported on virtually all HPC platforms

§ Portability - There is little or no need to modify your source code when you port your application to a 
different platform that supports (and is compliant with) the MPI standard

§ Performance Opportunities - Vendor implementations should be able to exploit native hardware features 
to optimize performance. Any implementation is free to develop optimized algorithms

§ Functionality - There are over 430 routines defined in MPI-3, which includes the majority of those in MPI-2 
and MPI-1

§ Availability - A variety of implementations are available, both vendor and public domain



MPI Language Interfaces
§ C/C++

§ Fortran

§ Java

§ Python (mpi4py, pyMPI, pypar, MYMPI)

§ R (Rmpi)

§ Perl (Parallel::MPI)

§ MATLAB (Matlab Parallel Server / DCS)

§ Others



Compiling MPI Programs

MPI 
Implementation Compiler Flag

OpenMPI
Mpich

mpicc
mpicxx
mpif90
mpif77
mpifort

None

Intel MPI
mpiicx
mpiicpx
mpiifx

None

Intel + OpenMPI / Mpich: 
module load intel/24.0.1-fasrc01
module load  openmpi/5.0.2-fasrc01
mpicc -o mpitest.x mpitest.c

GNU + OpenMPI / Mpich: 
module load gcc/13.2.0-fasrc01
module load openmpi/5.0.2-fasrc01
mpicc –o mpitest.x mpitest.c

Intel + Intel-MPI:
module load intel/24.0.1-fasrc01
module load intelmpi/2021.11-fasrc01
mpiicx –o mpi_test.x mpitest.c

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/MPI 

https://github.com/fasrc/User_Codes/tree/master/Parallel_Computing/MPI


Running MPI Programs (1)
Interactive test jobs:

(1) Start an interactive bash shell
> salloc -p test -n 4 -–mem=4G -t 0-06:00

(2) Load required modules, e.g.,
> module load gcc/13.2.0-fasrc01 openmpi/5.0.2-fasrc03

(3) Compile your code (or use a Makefile)
> mpicc –o mpitest.x mpitest.c

(4) Run the code
> mpirun -np 4 ./mpitest.x

Rank 0 out of 4

Rank 1 out of 4
Rank 2 out of 4
Rank 3 out of 4

End of program.



Running MPI Programs (2)
Batch jobs:

(1) Compile your code, e.g.,
> module load gcc/13.2.0-fasrc01 openmpi/5.0.2-fasrc01
> mpicc –o mpitest.x mpitest.c

(2) Prepare a batch-job submission script
#!/bin/bash
#SBATCH -J mpi_job                                 # Job name

#SBATCH -o slurm.out                               # STD output
#SBATCH -e slurm.err                               # STD error

#SBATCH -p test                                  # Queue / partition
#SBATCH -t 0-00:30                                   # Time (D-HH:MM)
#SBATCH --mem-per-cpu=4000                         # Memory per MPI task

#SBATCH -n 8                                       # Number of MPI tasks

module load gcc/13.2.0-fasrc01 openmpi/5.0.2-fasrc01 # Load required modules
srun -n $SLURM_NTASKS --mpi=pmix ./hello_mpi.x

(3) Submit the job to the queue
> sbatch run.sbatch



Running MPI Programs (3)

#!/bin/bash
#SBATCH -J mpitest       # job name
#SBATCH -o mpitest.out     # standard output file
#SBATCH -e mpitest.err     # standard error file
#SBATCH -p test        # partition
#SBATCH -n 8          # ntasks
#SBATCH -t 00:30:00      # time in HH:MM:SS
#SBATCH --mem-per-cpu=4000   # memory in megabytes

# --- Load the required software modules., e.g., ---
module load intel/24.0.1-fasrc01 intelmpi/2021.11-fasrc01

# --- Run the executable ---
# --- With Intel-MPI, you need to ensure it uses pmi2 instead of pmix ---
srun -n $SLURM_NTASKS --mpi=pmi2 ./mpitest.x

Intel & Intel-MPI



§ Sometimes programs can be picky about having MPI available on all the nodes it runs on, 
so it is good to have MPI module loads in your .bashrc file

§ Some codes are topology sensitive thus the following slurm options can be helpful
o --contiguous       # Contiguous set of nodes
o --ntasks-per-node  # Number of tasks per node
o --hint             # Bind tasks according to hints
o --distribution, -m # Specify distribution method for tasks 

§ For hybrid mode jobs you would set both -c and -n

Running MPI Programs (4)

https://slurm.schedmd.com/sbatch.html
https://slurm.schedmd.com/mc_support.html
https://www.rc.fas.harvard.edu/resources/documentation/software-development-on-odyssey/hybrid-mpiopenmp-codes-on-odyssey 
 

https://slurm.schedmd.com/sbatch.html
https://slurm.schedmd.com/mc_support.html
https://www.rc.fas.harvard.edu/resources/documentation/software-development-on-odyssey/hybrid-mpiopenmp-codes-on-odyssey


1. MPI Hello World program

2. Parallel FOR loops in MPI – dot product

3. Scaling – speedup and efficiency

4. Parallel Matrix-Matrix multiplication

5. Parallel Lanczos algorithm

MPI Examples

https://github.com/fasrc/User_Codes/tree/master/Courses/CS205/MPI_2021 

https://github.com/fasrc/User_Codes/tree/master/Courses/CS205/MPI_2021
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§ OpenMP is used for computationally intensive 
work on each node

§ MPI is used for communication and data sharing 
between nodes

§ This allows parallelism to be implemented to the 
full scale of a cluster

https://docs.rc.fas.harvard.edu/kb/hybrid-mpiopenmp-codes-on-odyssey/ 

Hybrid (MPI+OpenMP) Parallel Programming

https://docs.rc.fas.harvard.edu/kb/hybrid-mpiopenmp-codes-on-odyssey/


Running Hybrid Applications

#!/bin/bash 
#SBATCH -J hybrid_test 
#SBATCH -o hybrid_test.out 
#SBATCH -e hybrid_test.err 
#SBATCH -p shared 
#SBATCH -n 2 
#SBATCH -c 4 
#SBATCH -t 180 
#SBATCH --mem-per-cpu=4G 

export OMP_NUM_THREADS=4 
srun -n 2 -c 4 --mpi=pmix ./hybrid_test.x

Example 1: 2 MPI tasks with 4 OpenMP threads per 
MPI task, using 8 cores in total

Example 2: 4 Nodes with 1 MPI task per node and 
32 OpenMP threads per MPI task, using 128 cores in 
total (across 4 nodes)

#!/bin/bash 
#SBATCH -J hybrid_test 
#SBATCH -o hybrid_test.out 
#SBATCH -e hybrid_test.err 
#SBATCH -p shared 
#SBATCH -n 4 
#SBATCH -c 32
#SBATCH --ntasks-per-node=1  
#SBATCH -t 180 
#SBATCH --mem-per-cpu=128G 

export OMP_NUM_THREADS=32 
srun -n 4 -c 32 --mpi=pmix ./hybrid_test.x



Summary and hints for efficient parallelization
q Is it even worth parallelizing my code?

§ Does your code take an intractably long amount of time to complete?

§ Do you run a single large model or do statistics on multiple small runs?

§ Would the amount of time it take to parallelize your code be worth the gain in speed?

q Parallelizing established code vs. starting from scratch

§ Established code: Maybe easier / faster to parallelize, but my not give good performance or scaling

§ Start from scratch: Takes longer, but will give better performance, accuracy, and gives the 
opportunity to turn a “black box” into a code you understand



Summary and hints for efficient parallelization
q Increase the fraction of your program that can be parallelized. Identify the most time-consuming parts of 

your program and parallelize them. This could require modifying your intrinsic algorithm and code’s 
organization

q Balance parallel workload

q Minimize time spent in communication

q Use simple arrays instead of user defined derived types

q Partition data. Distribute arrays and matrices – allocate specific memory for each MPI process

q For I/O intensive applications implement parallel I/O in conjunction with a high-performance parallel 
filesystem, e.g., Lustre



Thank you! Questions? Comments?
Plamen Krastev, PhD

Harvard - FAS Research Computing


