
Using Singularity Containers on the FASRC clusters

Objectives
• Software difficulties on HPC systems

• Why use containers?

• Containers overview

• Singularity containers

• How to build your own Singularity containers

• How to run Singularity containers on Cannon/FASSE

• Bind mounts

Software difficulties on HPC systems
• Building software is often complicated, particularly on a shared and multi-tenant

system

• Some applications might need dependencies that are not readily available and/or
complex to build from source on a shared system

• Applications requiring software compatible with a different OS than what is offered
on the cluster, e.g., Rocky Linux vs Ubuntu

• Reproducibility:
• Different researchers may install different versions of an application and/or dependencies

• Portability & system-agnostic
• Hard to share workflows & pipelines, with external collaborators, on another HPC system

Why use containers?
 Overcome software stack, reproducibility and portability difficulties

• To create a virtual environment that contains all the software stack needed

• They package in one single file all necessary dependencies

• You can choose a linux operating system that is different than host (e.g. Ubuntu)

• Easy to publish

• Portable

• Reproducible

Why use containers?
• In 1990s, one OS with one app could be deployed on a single server. For more

apps or different OS, additional servers were required

• In 2000s, virtualization technology used a software, hypervisor, to split the server
to host multiple OS. But still only 1 app/OS

• Decade later, containerization allowed each app to be in its own container and
single OS to host multiple containers/apps

• Makes servers efficient and app deployment faster

• See container animation

Virtual machines (VMs) vs. Containers

Virtual Machines Containers

Very flexible -- for example, run Windows
on MacOS

Less flexible
Only Linux systems

Heavyweight -- need to install all files of
virtual environment

Very lightweight -- uses the kernel of host
OS

Adapted from LSU Singularity training slides:
http://www.hpc.lsu.edu/training/weekly-materials/2022-Fall/HPC_Singularity_Fall2022.pdf

Virtual machines (VMs) vs. Containers

● Abstraction of resources at OS
instead of hardware level

● Shares host OS kernel
● Results in faster, lightweight

instances with application
portability

● Consists of an entire runtime
environment – an application +
its dependencies (libraries,
binaries, configuration files, etc.)

Container vocabulary
• SingularityCE, Apptainer, Docker – the software that creates the container

• As in “SingularityCE” or “Apptainer” or “Docker”

• Image
• a compressed, usually read-only file that contains an OS and specific software stack

• provides a template for a container

• Examples: “Build a Matlab2021a image”, “Build an Alphafold image”, “Build an OpenFOAM image”

• Container
• The technology: “containers vs. virtual machines”; is a running application

• An instance of an image

• Example: “process my data in a Singularity container of Matlab”; build an image & run a container using that

• Host – computer/supercomputer/laptop where the container is run

Containers

Apptainer SingularityCE

HPC Oriented:

SingularityCE,
Charliecloud, Shifter

● WLM compatible
● No privilege escalation

Docker vs. SingularityCE

• Assumes user has root (admin)
privileges on the host system

• Not designed for HPC and
multi-tenant systems

• Assumes user does not have
root (admin) privileges on the host
system

• Designed for HPC and
multi-tenant systems

SingularityCE (Community Edition)

• Open-source container software: SingularityCE | Sylabs

• Specifically designed for HPC systems (i.e. multi-tenant systems)
• No root (admin) privileges

• Package applications with their dependencies and workflow into a single file

• Singularity, SingularityCE, Apptainer

• Singularity: deprecated since 2021

• SingularityCE and Apptainer: branches/children of Singularity since 2021

• SingularityCE: maintained by Sylabs since May 2021

• Apptainer: Singularity open source project & maintained by the Linux Foundation since Nov 2021

How to build SingularityCE images
• SingularityCE is best on compute nodes!!!

• Cannon: request interactive job using the salloc command

• FASSE: does not allow salloc – request a Remote Desktop job on FASSE Open OnDemand
and launch a terminal

• For details, see SingularityCE on the clusters

• Follow docs:
https://github.com/fasrc/User_Codes/blob/master/Singularity_Containers/README.md#build-your-
own-singularityce-container

SingularityCE workflow
Once: Build Singularity image with one of the following methods

1. Pull (i.e. download) existing container from SingularityCE Container Library

2. Pull existing Docker container from DockerHub (downloads as Singularity container)

3. Build a SingularityCE container from a Singularity definition file directly on Cannon/FASSE

– unprivileged build with proot

4. Build a SingularityCE container from a local Singularity definition file using option

--remote. This will build an image on Sylabs cloud which is automatically downloaded to

Cannon/FASSE

Many times: Use image

1. Pull image from SingularityCE Container Library

SingularityCE library (https://cloud.sylabs.io/library)

request interactive job
[jharvard@boslogin06 ~]$ salloc --partition test --time 01:30:00 -c 4 --mem 16G
[jharvard@holy8a24302 ~]$ mkdir -p ~/singularity
[jharvard@holy8a24302 ~]$ cd singularity/

pull laughing cow container container
[jharvard@holy8a24302 singularity]$ singularity pull library://library/default/ubuntu
INFO: Downloading library image
28.4MiB / 28.4MiB [===] 100 % 3.5 MiB/s 0s

pull ubuntu container
[jharvard@holy8a24302 singularity]$ singularity pull library://library/default/ubuntu
INFO: Downloading library image
28.4MiB / 28.4MiB [===] 100 % 3.5 MiB/s 0s

2. Pull image from DockerHub (Example 1)

DockerHub (https://hub.docker.com/)

pull laughing cow container container
[jharvard@holy8a24302 singularity]$ singularity pull lolcow_from_docker.sif
docker://sylabsio/lolcow
INFO: Converting OCI blobs to SIF format
INFO: Starting build...
INFO: Fetching OCI image...
27.2MiB / 27.2MiB [==] 100 % 28.6 MiB/s 0s
45.8MiB / 45.8MiB [==] 100 % 28.6 MiB/s 0s
INFO: Extracting OCI image...
INFO: Inserting Singularity configuration...
INFO: Creating SIF file...

you may choose the image name

To save space while pulling a container:
export SINGULARITY_CACHEDIR=/scratch/$USER/SINGULARITY_CACHE
OR, --disable cache in singularity pull command

export SINGULARITY_TMPDIR=/tmp

2. Pull image from DockerHub (Example 2, part 1/2)
1. Go to DockerHub (https://hub.docker.com/) and search for a container
2. For example, alphafold
3. Click on tacc/alphafold
4. Click on the “Tags” tab
5. Select the version that you need. You will see something like

docker pull tacc/alphafold:2.3.2

6. Singularity syntax to pull the image:
singularity pull docker://<organization>/<repository>:<version>

For tacc/alphafold, this becomes
singularity pull docker://tacc/alphafold:2.3.2

2. Pull image from DockerHub (Example 2, part 2/2)
[jharvard@holy8a24302 singularity]$ singularity pull docker://tacc/alphafold:2.3.2
INFO: Converting OCI blobs to SIF format
INFO: Starting build...
INFO: Fetching OCI image...
25.5MiB / 25.5MiB [==] 100 % 28.6 MiB/s 0s
838.4MiB / 838.4MiB [==] 100 % 28.6 MiB/s 0s
6.9MiB / 6.9MiB [==] 100 % 28.6 MiB/s 0s
10.3MiB / 10.3MiB [==] 100 % 28.6 MiB/s 0s
1.4GiB / 1.4GiB [==] 100 % 28.6 MiB/s 0s
430.3KiB / 430.3KiB [==] 100 % 28.6 MiB/s 0s
1.4GiB / 1.4GiB [==] 100 % 28.6 MiB/s 0s
210.8MiB / 210.8MiB [==] 100 % 28.6 MiB/s 0s
33.0MiB / 33.0MiB [==] 100 % 28.6 MiB/s 0s
31.9MiB / 31.9MiB [==] 100 % 28.6 MiB/s 0s
31.9MiB / 31.9MiB [==] 100 % 28.6 MiB/s 0s
930.1MiB / 930.1MiB [==] 100 % 28.6 MiB/s 0s
221.5MiB / 221.5MiB [==] 100 % 28.6 MiB/s 0s
INFO: Extracting OCI image...
INFO: Inserting Singularity configuration...
INFO: Creating SIF file...

3. Create container with proot (part 1/4)
Documentation:
https://github.com/fasrc/User_Codes/blob/master/Singularity_Containers/README.
md#build-a-singularityce-container-from-a-singularity-definition-file

1. Download proot in the directory ~/bin
2. Ensure ~/bin (e.g. /n/home01/jharvard/bin) is included in your PATH. If

not, add it
3. Write/obtain a definition file
4. Build SingularityCE image

3. Create container with proot (part 2/4)
make ~/bin directory
[jharvard@holy2c02302 ~]$ mkdir -p ~/bin

change to ~/bin directory, download proot, and change permissions to make it executable
[jharvard@holy2c02302 ~]$ cd ~/bin
[jharvard@holy2c02302 bin]$ curl -LO https://proot.gitlab.io/proot/bin/proot
[jharvard@holy2c02302 bin]$ chmod +x ./proot

print PATH
[jharvard@holy2c02302 ~]$ echo $PATH
/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/puppetlabs/bin:/n/home01/jharvard/.loc
al/bin

since /n/home01/jharvard/bin is not part of PATH, add it
[jharvard@holy2c02302 ~]$ export PATH=$PATH:~/bin

3. Create container with proot (part 3/4)
Bootstrap: docker

From: ubuntu:22.04

%labels

 Author: J. Harvard

%post

 apt-get -y update

 apt-get -y install cowsay lolcat

%environment

 export LC_ALL=C

 export PATH=/usr/games:$PATH

%runscript

 date | cowsay | lolcat

Header: base container image

Label: container metadata

Post: section where you add your own packages

Environment: set environmental variables

Runscript: commands run when you use
“singularity run ”

Singularity
definition file
lolcow.def

3. Create container with proot (part 4/4)
build singularity image
[jharvard@holy2c02302 ~]$ singularity build lolcow.sif lolcow.def
INFO: Using proot to build unprivileged. Not all builds are supported. If build fails, use
--remote or --fakeroot.
INFO: Starting build...
Getting image source signatures
Copying blob 76769433fd8a done

... omitted output ...

Running hooks in /etc/ca-certificates/update.d...
done.
INFO: Adding environment to container
INFO: Adding runscript
INFO: Creating SIF file...
INFO: Build complete: lolcow.sif

Limitations of builds with proot
proot’s emulation of the root user is not complete. Limitations include:

• Header
• Do not support arch / debootstrap / yum / zypper bootstraps

• Use localimage, library, oras, or one of the docker/oci sources.

• Do not support %pre and %setup sections of definition files

• Run the %post sections of a build in the container as an emulated root user

• Are subject to any restrictions imposed in singularity.conf

• Incur a performance penalty due to the``ptrace``-based interception of syscalls used by proot

• May fail if the %post script requires privileged operations that proot cannot emulate.

From https://docs.sylabs.io/guides/latest/user-guide/build_a_container.html#unprivilged-proot-builds

How to run Singularity images

Documentation:
https://github.com/fasrc/User_Codes/blob/master/Singularity_Containers/working_with_ima
ges.md

Singularity syntax
singularity <command> [options] <container_image.sif>

Commands
● shell: run an interactive bash shell inside the container
● exec: execute a command
● run: launch the runscript (from definition file)

Singularity and host file system

What users see within
Singularity image

Part of Singularity
image

Part of host OS

Bound from host OS to container
by default

To allow other filesystems to be accessible from container, use --bind option: --bind src:dest

• See Accessing files from a container
• https://docs.sylabs.io/guides/3.7/user-guide/bind_paths_and_mounts.html

Singularity with GPU

Documentation:
https://github.com/fasrc/User_Codes/blob/master/Singularity_Containers/working_with_ima
ges.md#gpu-example

Parallel computing and Singularity
• OpenMP examples:

https://github.com/fasrc/User_Codes/tree/master/Singularity_Containers/OMP_Apps

• MPI examples:
https://github.com/fasrc/User_Codes/tree/master/Singularity_Containers/MPI_Apps

FASRC Upcoming Trainings
Training calendar: https://www.rc.fas.harvard.edu/upcoming-training/

27

VSCode on the FASRC cluster

Training is focused on connecting to Cannon via VSCode (Visual Studio Code) from your
local machine.

Audience: Users who are familiar with command line, HPC systems, vscode and would
like to connect to Cannon using vscode.

Note: All topics below are a brief overview to get connected to Cannon using VSCode

Objectives:
1. Run VSCode on a login node
2. Run VSCode on a compute node

Resources and help
• Documentation

• https://docs.rc.fas.harvard.edu/
• Singularity docs: https://github.com/fasrc/User_Codes/tree/master/Singularity_Containers

• Portal
• http://portal.rc.fas.harvard.edu/rcrt/submit_ticket

• Email
• rchelp@rc.fas.harvard.edu

• Office Hours
• Wednesday noon-3pm https://harvard.zoom.us/j/255102481

• Consulting Calendar
• https://www.rc.fas.harvard.edu/consulting-calendar/

• Training
• https://www.rc.fas.harvard.edu/upcoming-training/

Survey

Please, fill out our course survey. Your feedback is essential for us to improve
our trainings!!

http://tinyurl.com/FASRCsurvey

29

Thank you!

