
Python Multiprocessing on the FASRC
Clusters

Learning Objectives

• Serial Processing
• Why use Multiprocessing in Python?
• Optimizing cluster usage variables for multiprocessing
• Basic process-based parallelism
• Controlling utilization with pooling
• Accelerating your code with numpy
• Other helpful tools & training

2

Serial Processing - What is it & When to use?
● Default mode of Python
● Tasks executed one after the other, in a strict sequence
● Easy to implement & understand

● Lots of very short operations &/or trivial computations
● Anything where setup and teardown of processes would slow down

execution
● Ex: Working with I/O on small files where the overhead of spawning

threads or processes is higher
● Code has dependencies between tasks

● But inefficient for computationally intensive tasks; dealing with large
datasets

Accelerating Your Python - Parallel Processing

■ Multiple tasks executed simultaneously, utilizing multiple cores
■ Achieve faster execution times by dividing workload
■ Require synchronization & communication between processes or

precaution between threads using global interpreter lock (GIL)
■ Process-based

• Separate processes, each with their own memory & Python interpreter => avoids GIL
• Harder to share objects between processes

■ Thread-based
• Threads share same memory space
• Could write to the same memory at the same time => needs GIL

■ https://medium.com/@bfortuner/python-multithreading-vs-multiprocessing-73072ce5600b
■ https://www.python-engineer.com/courses/advancedpython/15-thread-vs-process/

4

https://medium.com/@bfortuner/python-multithreading-vs-multiprocessing-73072ce5600b
https://www.python-engineer.com/courses/advancedpython/15-thread-vs-process/

MultiProcessing

■ Multiprocessing - Process-based parallelism
• Ability of a system to run multiple processors at one time

■ Allows several processes to run in parallel
■ Multiprocessing module allocates tasks to different processors and makes

better use of a multi-core machine
■ No shared memory means better isolation between tasks, reducing the risk

of data corruption
■ Amplifies program efficiency & resource utilization
■ multiprocessing — Process-based parallelism — Python 3.12.4 documentation
■ https://medium.com/@surve.aasim/python-process-based-parallelization-3f91645ac4cb

5

https://docs.python.org/3/library/multiprocessing.html
https://medium.com/@surve.aasim/python-process-based-parallelization-3f91645ac4cb

Multithreading - Thread-based Parallelism

Pros:

● Threads are lightweight execution units within a process
● Share memory making communication between threads efficient
● Good for IO bound tasks

Cons:

● Must manage to avoid race conditions, synchronization issues
● Python's Global Interpreter Lock (GIL) limits the effectiveness of

threads in CPU bound tasks by preventing the execution of python
bytecode simultaneously

Multiprocessing vs Multithreading

• One thread running at any given time in a python process

• For CPU heavy tasks, use multiprocessing, n_process=n_cores,

and never more

🔗 From Multithreading vs. Multiprocessing in Python (very informative)

Multiprocessing is parallelism/doing multiple

things at the same time.

Multithreading is concurrency/dealing with
multiple things at the same time.

Multiprocessing is for increasing speed Multithreading is for hiding latency

Multiprocessing is best for computations Multithreading is best for IO

https://engineering.contentsquare.com/2018/multithreading-vs-multiprocessing-in-python/

Software Based Multiprocessing vs Python Coding

● Software with multiprocessing options:
○ May be limited in configuration variables and thus performance
○ Is probably just threading

● See significant performance gains writing your own Python
multiprocessing code

● Tailor parallel execution to your needs
○ Process data efficiently
○ Control process communication
○ Handle errors and logging

● Community support around Python multiprocessing in guides,
manuals, and books

● Submit your slurm job and walk away

Training Material

9

Login to Cannon
ssh <username>@login.rc.fas.harvard.edu

Check current location & change if desired for this training: pwd
cd <desired-location>

Clone FASRC User Codes repository:
https://github.com/fasrc/User_Codes/tree/master

SSH - git clone git@github.com:fasrc/User_Codes.git

HTTPS - git clone https://github.com/fasrc/User_Codes.git

Create a training folder & go to that folder:

mkdir python-training; cd python-training

Copy Python folders from the User Codes directory:
cp -r ../User_Codes/Languages/Python .

cp -r ../User_Codes/Parallel_Computing/Python/Python-Multiprocessing-Tutorial .

https://docs.rc.fas.harvard.edu/kb/training-materials/

https://github.com/fasrc/User_Codes/tree/master
mailto:git@github.com
https://github.com/fasrc/User_Codes.git
https://docs.rc.fas.harvard.edu/kb/training-materials/

Python Package Installation - Interactive

o Go to a compute node on the test partition:

o Create a vanilla mamba/conda environment (for multiprocessing exercise):

o Alternatively, if default $HOME is desired, then do following instead:

o See Python Package Installation
10

salloc -p test --nodes=1 --cpus-per-task=2 --mem=12GB --time=01:00:00

module load python
mamba create --prefix=/n/holylabs/LABS/<desired-folder>/multiproc_env
python=3.11 -y

module load python
conda create --name multiproc_env python=3.11 -y

https://docs.rc.fas.harvard.edu/kb/python-package-installation/

Python Package Installation

o Activate conda/mamba environment:

o Or if $HOME used, then:

o Install relevant python packages (Mamba recommended):

o Always pip install inside a conda environment to avoid package conflicts

o https://docs.rc.fas.harvard.edu/kb/python-package-installation/#Pip_Installs
o Deactivate the environment:

11

mamba activate /n/holylabs/LABS/<desired-folder>/multiproc_env

mamba install numpy pandas matplotlib -y
pip install jupyterlab swifter

mamba deactivate

mamba activate multiproc_env

https://docs.rc.fas.harvard.edu/kb/python-package-installation/#Pip_Installs

Python Package Installation - sbatch
https://github.com/fasrc/User_Codes/tree/master/Languages/Python/Example2

multiprocbuild_env.sh: bash script for
creating the multiproc_env mamba
environment

12

Go to Multiprocessing Tutorial

cd Python-Multiprocessing-Tutorial

Submit job

sbatch run_multiproc.sbatch

https://github.com/fasrc/User_Codes/tree/master/Languages/Python/Example2

Multiprocessing - Process-based Parallelism - Basic

o Multiprocessing in Python - MachineLearningMastery.com

o Two functions declared to execute
print statements after sleeping for
2 & 3 seconds, resp.

o 3 processes created using
multiprocessing.Process inside main()

o The Process() utilizes target
argument to run target process

o Processes are run using start()

o Use join() to run & exit a processes
before the main program process

13

import multiprocessing

import time

def worker():

 name = multiprocessing.current_process().name

 print(name, 'Starting')

 time.sleep(2)

 print(name, 'Exiting')

def my_service():

 name = multiprocessing.current_process().name

 print(name, 'Starting')

 time.sleep(3)

 print(name, 'Exiting')

if __name__ == '__main__':

 service = multiprocessing.Process(name='my_service', target=my_service)

 worker_1 = multiprocessing.Process(name='worker 1', target=worker)

 worker_2 = multiprocessing.Process(target=worker)

 worker_1.start()

 worker_2.start()

 service.start()

https://machinelearningmastery.com/multiprocessing-in-python/

Multiprocessing in Python

o On the cluster, difference between number of CPUs allocated to the job vs
total number of CPUs available on the node

o Go to a compute node on the test partition requesting 10 cores:

o See total number of cores available on the node:

o Execute cpu-count.py to see which command gives you the number of
cores allocated to your job:

o See How to find out the number of CPUs using python - Stack Overflow
14

salloc -p test --nodes=1 --cpus-per-task=10 --mem=12GB --time=01:00:00

scontrol show node <nodename>

cd Python-Multiprocessing-Tutorial
python cpu-count.py

https://stackoverflow.com/questions/1006289/how-to-find-out-the-number-of-cpus-using-python/55423170#55423170

Multiprocessing - Pooling

o Run 1000 processes together - may not
be possible

o Create a process pool to limit number of
processes that can be run at a time

o Function declared to return the cube

o The multiprocessing.Process doesn’t work
with p.start() & p.join(), would need an
output queue as well. But faster than Pool()

o The multiprocessing.Pool module
easier to use, returns ordered result using
pool.map(), & causes less overhead

o See Python multiprocessing: How to know to use Pool or Process? - Stack Overflow 15

import multiprocessing

import time

import os

def cube(x):

 return x**3

if __name__ == '__main__':

 # The Process class

 processes = [multiprocessing.Process(target=cube, args=(x,)) for x in

range(1,len(os.sched_getaffinity(0)))]

 [p.start() for p in processes]

 result_process = [p.join() for p in processes]

 # The Pool class

 pool =

multiprocessing.Pool(processes=len(os.sched_getaffinity(0)))

 result_pool = pool.map(cube, range(1,len(os.sched_getaffinity(0)))]

https://stackoverflow.com/questions/31711378/python-multiprocessing-how-to-know-to-use-pool-or-process

Multiprocessing + Numpy with JupyterLab notebook

o Using Multiprocessing along with Numpy to accelerate python program

o Go to OOD (Cannon or FASSE) & launch JupyterLab notebook on test with
• 52 CPUs

• gcc/12.2.0-fasrc01 loaded as a module

• multiproc_env loaded as a kernel

• In python-training/Python-Multiprocessing-Tutorial

o Problem Statement:
• A sample data file has 4 columns and 1000 entries. Columns correspond to the time

a job was submitted, when it started, when it ended, and number of CPUs allocated.

• Calculate the total number of CPUs in use by currently running jobs for every
submitted job

16

Multiprocessing + Numpy

o Convert numerical columns to Numpy arrays.

o Declare a function to calculate CPUs utilized: calculate_cpus_utilized()

o Multiple methods utilized for the calculation:
• Use the function over each submitted-job entry

• Pandas apply()

• swifter.apply()

• Using Numpy arrays & for-loop

• Using Multiprocessing with a pool of processes = #CPUs requested for OOD job

o Run the notebook to see which method gives the fastest result

o Fastest: Combination of Numpy and Multiprocessing
17

Accelerate Python - Other Tools

o Numba

• https://numba.pydata.org/

o Swifter

• Speed up your Pandas Processing with Swifter | by Cornellius
Yudha Wijaya | Towards Data Science

• GitHub - jmcarpenter2/swifter: A package which efficiently
applies any function to a pandas dataframe or series in the
fastest available manner

o Dask

• https://www.dask.org/
18

https://numba.pydata.org/
https://towardsdatascience.com/speed-up-your-pandas-processing-with-swifter-6aa314600a13
https://towardsdatascience.com/speed-up-your-pandas-processing-with-swifter-6aa314600a13
https://github.com/jmcarpenter2/swifter
https://github.com/jmcarpenter2/swifter
https://github.com/jmcarpenter2/swifter
https://www.dask.org/

FASRC documentation

o FASRC docs: https://docs.rc.fas.harvard.edu/

o FASRC Python docs:
• https://docs.rc.fas.harvard.edu/kb/python/
• https://docs.rc.fas.harvard.edu/kb/python-package-installation/

o GitHub User_codes: https://github.com/fasrc/User_Codes/

o Getting help

• Office hours: https://www.rc.fas.harvard.edu/training/office-hours/

• Ticket

o Portal: http://portal.rc.fas.harvard.edu/rcrt/submit_ticket (requires login)

o Email: rchelp@rc.fas.harvard.edu
19

https://docs.rc.fas.harvard.edu/
https://docs.rc.fas.harvard.edu/kb/python/
https://docs.rc.fas.harvard.edu/kb/python-package-installation/
https://github.com/fasrc/User_Codes/
https://www.rc.fas.harvard.edu/training/office-hours/
http://portal.rc.fas.harvard.edu/rcrt/submit_ticket
mailto:rchelp@rc.fas.harvard.edu

Upcoming Trainings
Training calendar: https://www.rc.fas.harvard.edu/upcoming-training/

20

Informatics: SNPArcher tutorial

Training is focused on the snakemake workflow for variant calling in non-model organisms

Details: https://informatics.fas.harvard.edu/events/

https://www.rc.fas.harvard.edu/upcoming-training/
https://informatics.fas.harvard.edu/events/

Survey

Please, fill out our course survey. Your feedback is essential for us to improve
our trainings!!

http://tinyurl.com/FASRCsurvey

21

http://tinyurl.com/FASRCsurvey

Thank you :)
FAS Research Computing

